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A Flory-type mean-field theory of a nematic phase transition in the system of
nonphantom, entangled, directed polymers has been elaborated.

According to the conjectures expressed by Grosberg and Nechaev [Europhys.
Lett. 20, 613 (1992)], the “link complexity” of the chains is characterized

by the highest power of the Jones invariant for the corresponding closed braid.
The phase diagram is presented in the coordinates the “link complexity”

versus the ordering interaction constant. The order of the phase transition is shown
to be different for “weakly” and “strongly” entangled chains. © 7994

American Institute of Physics.

The liquid-crystalline-type phase transitions in the systems of long chain molecules
have been studied extensively (for review see, for example, Refs. 1 and 2). At present, the
scope of problems dealing with the nematic-type ordering in polymers is one of the most
examined branches of statistical physics of macromolecules. However, all the existing
theories ignore, to the best of our knowledge, the effects caused by entanglements be-
tween the chains in such systems.

The purpose of the present note consists in developing the simple mean-field theory
of the ordering phase transition in the system of entangled “directed polymers” with a
fixed topology.

We stress, at the outset, that we do not claim to find a new kind of phase transitions
or to describe a new class of real physical systems. We pursue two main goals only:

—To utilize the knowledge acquired in the knot theory, namely, in construction of
the algebraic knot invariants, to extract the simplified, non-Abelian, topological invariant
which will serve as a “link complexity” and could be a convenient tool for the investi-
gation of systems of entangled chain molecules;

—To show in the framework of Flory-type theory using the example of known
models how the presence of topological constraints modifies the usual disorder-nematic
phase transition.

1. The model. Consider an ensemble of directed random walks embedded in 2+1
dimensions. It is possible to represent each trajectory by a world line of a particle
randomly moving on the plane. Imagine that at the first time slice j=0, there is a given
initial distribution of M such particles. Let us assume that they move randomly in the
plane (x,y) under two conditions: a) the trajectories of the particles being projected onto
the plane do not escape a circle of diameter D; b) at the time slice j=N all particles
return to their starting points. Assuming that this phase trajectories of the particles in the
space-time are nonphantom, we obtain a system of directed, entangled, random walks
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FIG. 1. Braided system of entangled,
directed directed, random walks.
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confined in a cylinder with the dimensions of order D XD XN; see Fig. 1. If we make
now a closure identifying the ends of each phase trajectory, the system of M directed
lines will represent itself as a set of linked loops, i.e., the closed braid embedded in 2+1
dimensions.

The interactions can be introduced in the following way. Take two subsequent time
sections, j and j+1, and consider the segments of the world lines in the “time slit”
between these sections. It is required that two segments a and 8 ({a,8} €[1,M ]) with the
coordinates of the centers r, and rg interact with each other with an energy:

U(na’ra;nﬂyrﬁ)zg cos(nanﬁ)‘P(lra—rB‘)s (la)

where g is the interaction constant, n, 4 are the unit vectors directed along the segments
a,B in the given time slit, and the function ¢(|...|) depends only on the distance between
the centers of these segments.

For the function ¢(|r,—rgl)(a# B) we assume the hard core behavior:

1 if |r,—rg<a

o(|r,—rg))= 0 (1b)

if 'ra - rB| >a ’
where a is the length of the world line segment in the given time slit.

Assume now that the topology of a braid of M directed polymers is quenched in an
arbitrary given state, which does not change in the course of thermal fluctuations of the
chains.

The nature of an expected phase transition from the disordered state to the ordered
one can be easily understood from the following assumptions. Let us start with the case
in which the chains in the braid are strongly entangled. In this case one can see that some
chains wind around other chains, making it therefore impossible a parallel displacement
of the neighboring segments. On the other hand, the attraction energy [Egs. (1a) and (1b)]
is maximal when the neighboring segments are parallel. The competition between the
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entropic disordering for the fixed topological state of the chains and the direct attraction
of the chain segments could lead to a partial ordering in the system under consideration.
The less entangled are the chains, the more favorable is the ordering transition. The
corresponding phase diagram in the coordinates “link complexity” versus g [strength of
interaction in Eq. (1a)] is analyzed in Sec. 3.

2. Link complexity and entropy of entangled paths. The problem of describing
the entanglements in the system of nonphantom, directed, random walks has a long
history traceable to polymers® and anions.” The substantial progress in this field is con-
nected with the recent studies™ where the Chern—Simons path-integral formalism has
been applied in the study of the superconductivity and the quantum Hall effect. Never-
theless, the following problem remains: How does one introduce the rough quantitative
characteristics of the complexity of entanglements in the system which correctly repro-
duces the non-Abelian properties of the linked chains. We describe here the evident way
of constructing such characteristics, which we call the link (knot) complexity, 7, for the
system defined in the preceding section.

Consider the ensemble, {2, of all allowed, closed conformations of our chains in the
space-time. Because of the presence of topological constraints, the entire phase volume {)
splits into disconnected domains, w{l'} and (we(}), of homotopically equivalent paths
characterized by the topological invariant, I'. The entropy of the given topological state of
the system can formally be written as follows:

S{I=In o{l}=In 2,
{0}
X ST my,rps T =00y, e oy, ey =N =T (2)

To be more definite, we use for ' the polynomial invariant introduced by Jones,®
V(t), where ¢ is the usual “spectral parameter.”” We recall that the Jones invariant is a
Lourent polynomial in ¢ and is constructed according to the 2D knot diagram turned to
some general position (i.e., the crossing points on the projection are produced by pair
intersections of the chain segments only). The main condition on V() is that this function
should be invariant under Reidemeister moves (see Ref. 7 for details).

According to the ideas expressed in Ref. 8, let us use for the quantitative character-
istics of the knot complexity 7 the highest power of the Jones invariant, V(¢); i.e.,

In| V(1)

3)

=1 .
7 ,Lnl Int

It is noteworthy that instead of the Jones polynomial we could take the Alexander invari-
ant, V(¢), and define 7 as a highest power of V(¢) for a given braid.

Of course, the choice of the link complexity is completely arbitrary and depends
mostly on the author’s taste. However, we guess that our selection is rather general and
bring in its support the following arguments:

* The fact that the knot complexity # is a cruder characteristic than the complete
algebraic polynomial is not a disadvantage, but an advantage if we are dealing
with the statistical models. Actually, the same value of 7 characterizes a narrow
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FIG. 2. Closed trajectory of the random walk in the lattice of
obstacles (solid line) and its topological invariant—the primitive
path (dashed line).

Topological obstacle

class of “topologically similar” knots, which is at the same time much broader
than the class represented by the complete invariant. This allows one to introduce
the smoothed measures and distribution functions for # (as it will be explained
below);

The value of 7 describes correctly, from the physical point of view, the limit cases:
7=0 corresponds to “weakly entangled” trajectories, and 7~N matches the sys-
tem of “strongly entangled” paths. The later case has been discussed in detail in
Ref. 8;

There is a direct relation between the knot complexity 7 and the length of the
“primitive path” g of a test chain in the 2D lattice of obstacles (for a more
simplified model this relation was explained in Ref. 9). The “primitive path™ of a
closed trajectory in a plane entangled with an array of removed points (obstacles)
is defined as the shortest, uncontractible path (shown in Fig. 2 by the dashed line)
which remains after deleting all “double-folded” parts of the trajectory. The primi-
tive path is a well-known topological invariant which is widely used for describing
entanglements in statics and dynamics of polymer systems (see review!?).

The last argument is specified in the following assertion:

Statement.

1. Take the system of M nonphantom, directed, random walks of length L =Na with
fixed ends and without ordering interactions, confined in a circle of diameter D on the
projection (see Sec. 2 and Fig. 1 for details). Define the average value of the knot
complexity, {z)

1
(p(N.M,D,a))y=—2, na(n), )
Qg

where () (see above) is the total number of the microstates in an ensemble of directed,
random walks with fixed ends, and (%) is the subset of {) of paths with a fixed value of
the highest power of the Jones invariant, 7.

2. Consider the closed random walk (with self-intersections) of length L in the plane
in the lattice of topological obstacles with an average spacing c=D/ VM and define the
average value of the primitive path, {w)
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1 ;
(W(N.M.,D,a)y== 2, palw), (5)
2 n

where () is the total number of the microstates in an ensemble of closed nonphantom
random walks in the plane, and @(u) is the subset of () of walks with a fixed value of the
primitive path, u, in the lattice of obstacles.”

There exists a nonrandom “time-independent” limit

. (n(N.M,D,a))
Al]lﬁl}l:o m— const (M,D,a). (6)

The complete, mathematically rigorous proof of this statement is still not known, but
the relation shown above clearly physically follows from the Fiirstenberg theorem.'! This
theorem establishes the limiting behavior of the highest Lyapunov exponent, A(N), for the
product of N independent, identically distributed, random matrices. For our system the

Jones invariant can be written as follows:!2

N
V(t|N,M,D,a)=Tr [] Wj{flnl,l‘xé---;ﬂMarM}’ @)
j=1

where Wj(.,.) are the “braiding” operators; they are random on each time slice j and obey
the Yang-Baxter algebra. The quantity In|V(¢|...)| is therefore proportional to the highest
exponent of the Jones polynomial and to the Lyapunov exponent of the operator product
in (7). On the other hand, the fact that the highest Lyapunov exponent is directly propor-
tional to the primitive path of the random walk in the lattice of obstacles is known from
the consideration of the random walks on the so-called free group—the covering space
for the plane with the lattice of removed points—as it has been explained in Refs. 9
and 13.

The partition function Z{u,N,c,a,) of the random walk of length L=Na, in the
2D lattice of obstacles with the spacing ¢ and the primitive path of length u is given by

the equation.!>!*
2132 2 2
) c M Nay M 12
= —_— —_ + — —_———
Z(u,N,a, ,c) const(Naﬁ) . exp( — In(2v3) e In 3 2Nai , (8)

where the numerical coefficients correspond to the square lattice of obstacles, and ay is
the length of the segment projection onto the plane (x,y) (see Fig. 2).

Finally, the entropic (elastic) contribution to the free energy F as a function of the
link complexity # for the system of M entangled, directed random walks is

D NaiM?
Fy(7,N.M,D,a,)=~M In Z uEﬂ,N,aL,C=W= -2 In(2/3)
"Mwl 3+MV2 M1 Ui + 9
2D 7T oNG? n a2y et O
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where we have T=1 for the temperature, and c=D/ VM for the average distance between
the effective topological obstacles.

3. Mean-field theory of phase transition in a system of entangled, directed chains. In
the mean-field approximation the total free energy of the system, F, is a sum of “elastic”
F, and “‘ordering” F;, terms. Assume that, on the average, all segments form the same
angle ¢ with respect to the z axis, i.e.,

(cos(nyng))y=73 cos® 6{a,B}e[1,M]. (10

We thus have a, =a sin 6.

Collecting (la), (1b), (9), and (10) and taking into account that F;,
=—(U(n,ryngrg), we obtain the following expression for the nonequilibrium free
energy of the system of entangled, directed, random walks:

Foo)m Na’M? 1n(2/3) 24 M** 3 My
(6)= D? S0 oD T ING?

nD? 3 gNa*M?

X =2 _ - o -
sin”- 6—M In (N sin”” & D2

cos? @+ const, (1)
where sin? #=w is the variational parameter which changes in the region w
e [#%/(Na)?,1], and the interaction term is written in the second virial approximation.
In principle, the free energy (11) should be minimized with respect to D (as well as to w)
to reach the equilibrium density, but we start with the simplified case which assumes the
density to be constant.

Let us define the dimensionless density p and the relative length of the averaged
primitive path 7 (called below the “relative link complexity”’) as follows:

Ma? 7
p=—DT; T‘—‘N; 0=sr1<1). (12)

The normalized free energy f(w) can now be written as follows:

2 7 3
= — in? = = - —t -
f(w) NM F(sin® =w)=p(g—In 12)w+w+N In w+C(p,7,N), (13)
where
rPsw<l,

1/2

and the function C(p,7,N)=—p "“71n 3+2/N In p does not depend on w.

The variable w=sin’ 8 plays a role of the “order parameter” in our model. In the
isotropic phase we have for the distribution function {6)=1/2w. Thus,
Wio=Jw(0)¢(0)d 6=3. Let us assume that

—for w<} the chains are in the ordered (nematic-like) phase;

—for w=1! the chains are in the disordered? phase.
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The phase transition curve is determined by comparing the minimal value of the free
energy, f(w), on the interval <w<w, to the value f(w;,,=3). It can be easily seen that

the first-order phase transition is possible only if g<\In 12. Thus the condition for the
transition is

[f(wzw):f(wzwiso)

o<w<i > (14)

where

_ ~3+V9+4(N7)°p(g—In 12)
w—max[ 75 Win= 2Np(g—In 12) . "

The second-order transition appears for g>In 12, as well as for g<in 12, when the point
of the free energy minimum reaches the upper boundary of the interval [1’2,%]. The tran-
sition point in this case is determined by the equation

1

3 (16)

Wnin™=

which has the obvious solution

1 /6
=3 Ny +p(g—1n 12). (17

The complete phase diagram in the coordinates (7,g) is shown in Fig. 3, where the
border of the transition from the disordered phase to the ordered phase is drawn for the
particular choice of the parameters: {p=0.03; N =1000}. We see that this border consists
of two curves corresponding to the first-order transition (g <<In 12) and the second-order
transition shown by solid and broken lines, respectively. Between the first-order and
second-order transition curves there is an instability (“hysteresis”) region. The shape of
the transition curves in not very sensitive to the changing of the parameters p and N,
although the hysteresis region is extended to the value 7= y3/2N, and is very small for
large N.

Let us summarize briefly the main results of our study.

* We develop the ideas expressed in Ref. 8 and use the highest power of the Jones
invariant as a quantitative characteristic of the link complexity # for the system of
entangled, directed, N-step, random walks (braid). On the basis of the assumed
relationship between 7 and the length of the primitive path, u, for the N-step
random walk in the effective lattice of obstacles we estimate the entropy of the
braid for the given topological state.

* We construct a simple mean-field theory of the ordering transition in a system of
entangled, directed, random walks in a broad interval of values of the link com-
plexity and show that the order of the phase transition is different for “weakly”
and “strongly” entangled chains.

The ideas expressed here could be developed in the following directions.
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FIG. 3. The phase separation diagram.

—To prove rigorously the fact that the distribution function A 7,N) of the highest
power 7 of the Jones invariant for the randomly generated braid of length N has the limit
behavior,

1 (n—y:N)?

AnN) « I-VT/ZeXP‘— TN |’
where y; and v, are the numerical constants which depend on the particular features of
the model. (The paper'® devoted to a related problem is in preparation now.)

—To take into account in the framework of the theory proposed above the possibil-
ity of reaching the equilibrium density of the chain segments considering p [Eq. (12)] as
an additional variational parameter of the free energy.

—To investigate the influence of topological constraints on the smectic-type order-
ing in the layers parallel to the (x,y) plane.

—To extend the proposed theory beyond the mean-field approximation for investi-
gating the influence of the global topological constraints on the local correlation functions
of the chain segments.
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"The nonphantom nature of the random walk implies the existence of topological constraints caused by the
lattice of obstacles only. The volume interactions are ignored.

? Actually, the values of the order parameter w greater than 1/2 correspond to the ordering in the layers normal
to the z axis, but in the framework of the model we discuss the transition between two phases only—ordered
(nematic-like) and disordered phases.

'A. R. Khokhlov and A. N. Semenov, Physica 108-A, 546 (1981); 112-A, 605 (1982).

2]. V. Seilinger and R. F. Bruinsma, Phys. Rev. (A) 43, 2910, 2922 (1991).

*M. Doi and 8. F. Edwards, Theory of Polymer Dynamics, Academic Press, N.Y., 1986.

4R. MacKenzie and F. Wilczek, Int. J. Mod. Phys. (A) 3, 2827 (1988); C. Lai and C. Ting, Nucl. Phys. (B) 396,
429 (1993).

SE. Fradkin, Field Theory of Condenced Matter Systems, World Sci., Singapore, 1990.

®V. E. R. Jones, Bull. Am. Math. Soc. 12, 103 (1985).

L. Kauffman, Braid Group, Knot Theory and Statistical Mechanics, World Sci., Singapore, 1989.

SA. Grosberg and S. Nechaev, Europhys. Lett. 20, 613 (1992).

?S. Nechaev and A. Vershik, J. Phys. (A): Math. Gen. 27, 2289 (1994).

P de Gennes, Scaling Concepts in Polymer Physics, Cornell Univ. Press, Ithaca, N.Y., 1979.

I'H. Firstenberg, Trans. Am. Math. Soc. 198, 377 (1963); V. N. Tutubalin, Prob. Theory and Appl. 10, 15
(1965) (in Russian).

2W. B. R. Lickorish, Bull. London Math. Soc. 20, 558 (1988).

BL. Koralov et al., Prob. Theor. and Appl. 38 (1993) (in Russian); Chaos 1, 131 (1991).

4E. Helfand and D. S. Pearson, J. Chem. Phys. 79, 2054 (1983); M. Rubinstein and E. Helfand, J. Chem. Phys.
82 (1985); A. Khokhlov and S. Nechaev, Phys. Lett. (A) 112, 156 (1985).

158. Nechaev ef al., Common. Math. Phys., to be submitted.

Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation
Editor.

299 JETP Lett., Vol. 60, No. 4, 25 August 1994 S. Nechaev 299



