Magnetoacoustic resonance in metals
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It is shown that screening of the electron-phonon interaction by vortex fields
shifts the lower boundary of the region in which the magnetoacoustic resonance
exists by hundreds of kilohertz to several hundred megahertz.

PACS numbers: 76.50. + g

It is customarily assumed that the magnetoacoustic resonance must exist in the fre-
quency range where the wavelength of sound is small compared to the mean free path of
electrons (for a mean free path of 1 mm, this range lies above 100 kHz). This Doppler-
shifted acoustic cyclotron resonance (DSACR) must appear as a maximum at the edge of
the threshold for collisionless absorption.! The result in Ref. 1 was obtained assuming
that vortex fields created by the sound wave in the metal do not play a significant role.
In this paper, we demonstrate that for frequencies that are not too high vortex fields
strongly screen the interaction of electrons with sound and the resonance peak, related to
DSACR of the main group of carriers, is missing.

Let us examine absorption of transverse sound, propagating in a metal along the mag-
netic field H il z. For simplicity, we shall assume that the Fermi surface is shaped like a
corrugated cylinder and that its axis coincides with the direction of H. We shall assume
that the deformation potential has the form Ay = - {omv;vy (v is the velocity of an elec-
tron, m is the cyclotron mass, and {, is a2 constant) and we shall calculate the electric cur-
rent density in the metal and the density of forces acting on the lattice. Thus, the follow-
ing dispersion equation for the wave in the metal is obtained from the system of equa-
tions for the sound and electromagnetic fields (see, for example, Ref. 2)
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where w is the frequency, & is the wave number, s is the velocity of sound in the absence
of a magnetic field, ¢ is the velocity of light, p is the density of the crystal, ¢ =¢o (1 £iy),
v=1/Qr7,  is the cyclotron frequency, 7 is the free flight time, and 0. (k) =0, (k)
*ig,, (k) is the nonlocal conductivity for circular “plus” and ““minus” polarizations.
Terms that do not contain a factor { are related to the induced interaction of electrons
with sound. In deriving (1), we expressed the deformation current and the deformation
force in terms of o1 (k) -0+ (0).

For the Fermi surface being studied, the nonlocal conductivity has the form
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where 7 is the concentration of electrons, and v is their maximum velocity along the vec-
tor H. The conductivity (2) has a singularity at k= Q(1 +iv)/v, corresponding to DSACR.
As a result of the screening of the electron-phonon interaction by vortex fields, this sin-
gularity is present only in the denominator on the right side of (1). For this reason, the
latter vanishes at the singularity if the vortex fields are ignored, the expression iwa. (k) (¢
- 1)2H? [pc? , which becomes infinite at resonance, would appear on the right side of (1)].
This situation is similar to that occurring in the case of the tilt effect.?

Damping of the sound wave is determined by the imaginary part of the expression on
the right side of (1). Far from the helicon-phonon and doppleron-phonon resonances,
k= /s can be substituted in this expression and the damping coefficient T", is written in
the form ‘

12 ] q 1!
r (H) Imk = Folm' (1—— f)x ’ ‘a t o— , (3)
4 I RVICET e
where
wnmv w8y ? cimv vw  H;
TR T Y
2ps? s 4mwne? Qs  H

The parameter « is the cube of the ratio of the anomalous skin layer thickness to the
wavelength of sound, while H is the value of the magnetic field corresponding to the col-
lisionless absorption threshold (g =1). The results of the calculation for “plus’’ polariza-
tion, which does not include either a helicon or a doppleron, are presented in Fig, 1. The
calculation was carried out for the following values of the parameters: n=10% cm, m
=107%" g, v=10% cm/s,s=2X 10° cm/s,7=10"° s5,{o=2and p=10g-cm>. In the
vicinity of the point //; on curve 1, there is a sharp drop due to the disappearance of col-
lionless absorption, but there is no resonance maximum on it. This is a result of the fact
that in the case wd/s <1 voriex fields strongly screen the interaction of electrons with
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FIG. 1. Magnetic field dependence of the ab-
sorption coefficient of sound: curve 1,2=0.5;
curve 2,g=1;curve 3,a=3.
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FIG. 2. Curve 1,2=3;curve 2,4 =5.
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the sound wave (the condition w8 = s corresponds to the frequency 250 MHz). In the op-
posite case wd/s > 1, the screening is weaker. For this reason, curve 2 has, near the ab-
sorption edge, an asymmetric peak, whose height is determined by the quantity 4. This
situation remains up to very high frequencies #~+y 2. For high frequencies, screening
disappears and the case examined in Ref. 1 is realized.

For minus polarization, the dispersion equation (1) has a solution corresponding to
electromagnetic modes: a helicon and a doppleron. For this reason, for a=0.5 on the
curve T'.(H), there is a strong maximum at the field H ~2H, which is due to a helicon-
phonon resonance. For high values of a, this resonance is missing, but a doppleron—
phonon resonance (DPR) exists. The corresponding maximum in T () is situated to the
right of the point H, at a distance AH~H, [24? . For a=3, it is Jocated practically at the
threshold of collionless absorption and its height greatly exceeds I'y. The magnetoacous-
tic resonance therefore is not manifested here.

If the Fermi surface is not axially symmetric, then the absorption coefficient I" has
singularities for fields H,, = H, /n, where n is an integer. These singularities in I" differ
from the anomalies near the point A, , since multiple resonances occur in the region of
strong, collionless absorption. For 2< 1, the absorption I' can be assumed to be inversely
proportional to Reo(g). For this reason, the resonant maxima in Reo(q) must be mani-
fested as minima in I'(H).

It should also be noted that in metals with anisotropic Fermi surfaces a situation can
arise in which the line I'(H) is inverted relative to the point A, . This must occur when
the derivative of the cross-sectional area of the Fermi surface 35/dp, has a minimum, i.e.,
when the longitudinal velocities of all electrons in a given group are greater than some
minimum value. For a model Fermi surface of this type, described in Ref. 4, the nonlocal
conductivity has the form?)
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where v is the minimum longitudinal velocity of electrons. The results of a calculation of
the damping coefficient for a wave with minus polarization, in which DPR is missing, are
illustrated in Fig. 2. Collisionless absorption of the wave in this case exists for fields
H>H,.
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Thus, the magnetoacoustic resonance,! which is caused by the main group of car-
riers, lies in the hypersonic region. In the transition region, where 1 <a <vy~'/?, experi-
mental observation of this resonance requires careful separation of DPR and DSACR sig-
nals, existing in opposite circular polarizations.

We note that the results obtained can explain the shape of the sound absorption
curve near DSACR of octahedral holes in tungsten.’

We thank L. T. Tsymbal, who pointed out this problem to us.

Upp Eq. (8) of Ref. 4, the expression in the radicand should have the opposite sign.
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