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A new approach is outlined for studying the electromagnetic form factor of the
pion in quantum chromodynamics. This new approach is based on the method
of quantum-chromodynamics sum rules. A theoretical curve derived for F, (Q?)
agrees well with the experimental data available.
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The application of perturbative quantum chromodynamics to large-momentum-
transfer elastic processes in the late 1970s (see Ref. 1, for example, and the review ar-
ticles in Refs. 2 and 3) was an important step in the development of the quantum chro-
modynamics of hard processes. In particular, the asymptotic freedom of quantum
chromodynamics makes it a simple matter to reproduce the familiar quark counting
rules for the hadron form factors in the asymptotic region.* In the range of momentum
transfers Q® presently attainable, however, the experimental data available on the pion
and proton form factors are not described satisfactorily by the existing theory.! ™ This
disagreement should not be interpreted as evidence against quantum chromodynamics,
since the question here is one of asymptotic formulas, and their extrapolation to moder-
ately large Q% would generally not be legitimate. For the pion, for example, hard rescat-
tering is predominant in the limit Q% - oo (Fig. 1a). A detailed analysis® for the region
Q% <20 GeV?, however, shows that the average virtuality of the gluon in the diagram in
Fig. 1a does not exceed (300 MeV)?, and in such a situation we cannot rely on perturba-
tion theory because nonperturbative effects are predominant at such small virtualities.
One of the previous authors has attempted previously to incorporate such effectsin a
model.® In the present letter we will use the analysis of the pion form factor as an ex-
ample to outline a new approach to the study of exclusive processes in quantum chromo-
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dynamics. This new approach is based on the systematic use of the quantum-chromo-
dynamics sum rules,” in which nonperturbative effects are taken into account by incorp-
orating in the theory the nonvanishing average gluon and quark vacuum fields.

Proceeding in the spirit of Ref. 7, we consider the three-point amplitude

TH8(p, )= it [ e <01 (P ) I* @ x))10>d xdy (1)
(Fig. 1b), where J # is the electromagnetic current, j*=d vs Y, is the axial current
(which has a nonvanishing projection on the one-pion state [P): (01j*(0)IP)=if,P%,
where f;; = 133 MeV). The invariant amplitudes T; in 7“*? depend on the three variables
P3, 03,4 =(p1-p2)?. Because of the asymptotic freedom of quantum chromodynam-
ics, we can evaluate T« p%, p%, ¢*) in the Euclidean region p? ,p3, ¢* <-u} ~-(1 GeV)?2.
To extract information on the form factors of physical states, we use the double disper-
sion relation

| o(sy . 52, 49
7 (pf,p%;qz) =— [ds [ds;
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where the terms which have not been written out explicitly are polynomials in p,? and/or
P22 These terms vanish after the Borel procedure, described in Ref. 7, is applied to (2)
with respect to p,? and p,%:
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where Q2 =-g?, and ®; is the (double) Borel transform of the amplitude 7;. To avoid
introducing an asymmetry between the initial and final states, we set M; =M, =M; it is
then possible to rewrite (3) as an integral over s=s, +s, and £ =5, /s.

The invariant amplitude [which we will denote below as ®(M *,Q?)] which is most
important for the analysis of the pion form factor is related to the structure P*PP
where P=p, +p,. This amplitude can be distinguished easily by rotating 7%*f with
nynghy, where 7 is a lightlike vector having the properties n* =0, (np;) =(np, ) #0,
(ng)=0. If the quark masses are ignored (11, g < 10 MeV << ), the diagram in Fig. 1b
makes the following contribution to ®:

dI0) (p2 )= fx (1—-x)exp{ — o x dx
47M2 IM? }—x
1 * §2(2s+3 -
_ ( ) 0" M 4. .
2m M, (2s+ @P)° 4)
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In the first form given here for the contribution, the variable x is the fraction of the pion
momentum which corresponds to the passive quark (in a system of infinite momentum).
This representation is most convenient in analyzing the behavior of ®1®) iy the limits
0% o0 and 0 » 0. The second form given here for the contribution $!?) has the spec-
tral representation (3), where an integration is carried out over £. With regard to the
spectral density p(s, 5, ; g2 ), we will assume, as is customary in our approach,’ that p

is the sum of a resonant (pion) contribution and a “‘background.” Beginning at a certain
value of s, which we will call 5o, this background becomes equal to the free value,l,)
which we adopt in the form required by (4):

P(s1,825 q%) =nf2F (Q?)8(sy~m2)8(s;—n? ) +8 (s— so)

o5 (25+30%
2(2s +Q%H° ®)

An important achievement of the method of quantum-chromodynamics sum rules
is that the duality interval 5, is not a free parameter but is instead determined by correc-
tions to (4) which are proportional to powers of 1/M?. Taking into account the contri-
butions proportional to (as/m) (G %,G %,)=0.012 GeV* and a5{gq)* =1.83-107*
GeV® (the numerical values are taken from Ref. 7), and using (3)-(5), we find the follow-

ing representation for the form factor: )
289/ 2s¢ + Q°)

M?s} (2so+30? ( so) 3IM?

f2F (Q?) =-— exp{——. |+ —= \x (1-x
™ 2m? (2s0+ Q%)3 M? 47 3 ( )
F x . ) 1T6ma,< qq>>
— —_ a e
X exp M Tox dx + a < GW GW >S/(12aM4)+ P
X<1 2 Q’) (6)
u M)

The physical quantity [F,(Q?)] obviously must not depend on the auxiliary parameter
M? whose choice is entirely at our disposal. It is not difficult to show that at sufficient-
ly large values of M2 the M2 dependence of the right side of (6) is very weak, but that
value of the parameter M ? at which the asymptotic regime is established depend on s,
If we assume that the “actual” value of s, is that at which the region of insensitivity to
changes in M? is broadest, then for 0% =2 GeV? we find s, = 1.0 GeV? on this basis. This
value is in excellent agreement with the value so = 1.05 GeV? found from the requirement
that the area of our “duality triangle” [equal to s, /2, according to (5)] must be equal
to (s§¥*)? , where s§'% = 0.75 GeV? is the duality interval for the two-point amplitude cal-
culated in Ref. 7.

In choosing M ? we should take into account the fact that the contribution of the
power-law corrections to (6) falls off with increasing M 2, but the contributions of the
background [which is taken into account approximately in (5)] increases; conversely, the
background contribution decreases with decreasing M2, and the power-law corrections
increase. We accordingly choose the minimum possible M? for which the power-law
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FIG. 2.
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corrections (for 0% =2 GeV?) do not exceed 30% of the main contribution. On this
basis we find M2 =1.8 GeV?.

Representation (6) does not hold for arbitrary values of Q2. In the region Q? .gmf,
=0.6 GeV? the power-law corrections in 1/Q? are potentially dangerous, and on this

basis we have the lower boundary 0%, =0.6 GeV2. On the other hand, in the limit
(9 > o the basic contribution to 1 (Q%, M?) comes from the region x ~M? )02,
where the passive quark has a virtuality 2 ~M*/Q?. Accordingly, at Q> >M*/m?,
(i-e., for 0* 2M*[m% =5 GeV?) we should expect large corrections of the type Q* /M 2.
In fact, in the limit 9 = o the amplitude ®?) (02, M?) exhibits the behavior 1/Q?,
while the contribution of order (G?), say, does not depend on Q? [see (6)]. Conse-
quently, the power-law corrections to (6) (which amount to 30% at Q* =2 GeV?)
reach nearly 100% at 0* =6 GeV?, and it becomes necessary to also consider some

(if not at all) of the succeeding terms in the expansion in 1/M 2. Figure 2 compares a
theoretical curve plotted from (6) (for sq =1 GeV?, M? =1.8 GeV?) with the available
experimental data.?

In principle, ordinary perturbative corrections must also be taken into account in
addition to the power-law corrections (Fig. 1¢). Their contribution, however, is sup-
pressed by the factor ag/m, and at 0% < 10 GeV? we estimate their contribution to be
about 10%. In the limit 0% - oo, however, diagrams like that in Fig. 1c have a 1/Q? be-
havior, which corresponds to the quark counting rules of Ref. 4 and the asymptotic quan-
tum chromodynamics analysis of Refs. 1-3.

We wish to thank A. V. Efremov for stimulating discussions and B. M. Barbashov and
V. A. Meshcheryakov for interest and support. In the course of this study we learned that
the pion form factor is being analyzed by similar methods by V. L. Toffe and A. V. Smilga,
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1)This choice was suggested to us by B. L. Ioffe.
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