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An expression for the average energy of dipole photoabsorption is derived in the
self-consistent theory of finite Fermi systems. This expression gives a correct
description of both the position of the giant dipole resonance in nuclei (even the
lightest) and the splitting of this resonance by static deformation. The approach
developed here can be generalized in a natural way to other systems. In
particular, it gives the average frequency of dipole transitions in an atom and in
small metal particles.

PACS numbers: 24.30.Cz, 25.20. + y, 23.20.Js

We have worked from the equation for the transition density matrix in the theory of fi-
nite Fermi systems' to develop a technique for calculating the moments m, = e |(s| V5l0)I?
for arbitrary external fields V. Simple closed expressions can be derived for the moments
m; and m;, and the mean square transition energy in a field ¥, can be expressed in
terms of these moments: w? =m3/m, . Let us consider a multicomponent system to
which a field V§ =¢; x exp(iw?) is applied, along the x axis. If the interaction Fis not re-
tarded and does not contain velocity harmonics, we then have the following expression
for the first moment (h=1):
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where N; is the number of particles of species i with mass m;, and ¢; is the “charge” of
these particles with respect to the field V. Expression (1) corresponds to the standard
classical sum rule. For the third moment we find, using the consistency conditions,?
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(here and below, the parentheses denote an integration over all the coordinates). We see
that only the “nondiagonal’ interactions (i # k) make a direct nonzero contribution to
my ; the “diagonal” components of Faffect the densities p’ through the consistency con-
dition. For a nucleus, the charges are c? =eN/A and ¢* = -¢Z/A, and the average dipole-
photoabsorption frequency, which is associated with the energy of the giant dipole re-
sonance (GDR), is

7.0 p\]1/2
Wepg =( W2)Y? = -4 dpff"" dp,) : 3)
GDR x m NZ \ dx dx

This result, derived by a definitely quantum-mechanical approach, corresponds to the
classical picture® : The giant dipole resonance is an oscillation of two subsystems of
nucleons with respect to each other with a transition density p’t'r ~dp¥/dx and a frequency
determined by the classical mass coefficient and with a stiffness which depends on the
neutron-proton interaction %P (at the nuclear surface) In contrast with the interpre-
tation adopted in Ref. 4, the isovector amplitude # ~ associated with the symmetry ener-
gy does not appear explicitly in the resuit, and the oscillation is a surface oscillation,
rather than volume oscillation. We also note that expression (3) has the collective dipole
frequency vanishing in the limit #"” —0. In the non-self-consistent approaches, this
limiting case does not occur, although it is obvious from the physical standpoint: If there
is no interaction between the different components in the system, the corresponding sub-
systems can separate without contributing energy to the internal excitations, as in the
case of a shift of the common center of mass (¢” = ¢ and m; =0). In the limit 4 <o we
find from (3) the asymptotic behavior
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where er (pg) is the Fermi energy (or momentum), d is the diffuseness parameter in the
distribution of the nuclear density, fifs = (fif +120)/2, and f3P and f37 are the constants
of the theory of finite Fermi systems. If the amplitudes %™ does not depend on the
density, then the coefficient e in (4) is =0, and for this coefficient to reach a value of
order unity we would have to introduce a strong interpolation;i.e., we would have to
change /™ substantially from the internal value f7¥ to the vacuum value f7?. Figure 1
shows the energies wgpr found from (3) with the interaction 5™ =Cy f25:8 (1r-1),
where Cy =300 MeV - F* and f75;=-2 0 (in agreement with the values found for /7
and /7 through a description of the ground and low-lying collective states of nuclei in
the self-consistent theory of finite Fermi systems with a density-dependent interaction®).
As the p’ we use the shell-model densities in the Woods-Saxon potential and the universal
parameters from Ref, 6. It is interesting to note the good overall agreement between this
rough calculation (the crosses) and the experimental data of Ref. 7 (the circles); the slow
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oscillations of wgpr (4) are reproduced in a qualitative way. Their amplitude can be
smoothed and the agreement with experiment improved if we incorporate pairing in the
model for the density p’ (these results are indicated by the triangles, which were calcu-
lated with a pairing-correlation parameter A=1 MeV). With rare exceptions, the calcu-
lated values lie within the experimental errors (usually £100-250 keV; these errors are
not indicated in Fig. 1).

Account of the velocity harmonics in % leads to an additional factor in (3), which re-
duces to a renormalization of fiF;. In the simple model with three- and four-particle
forces, which lead to linear and quadratic dependences of the effective interaction on the
density, we find the following relationship between fifs (= -2.0) and the basic parameters
of the nuclear matter:
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Here m* is the effective mass, f77 is the constant of the first (velocity) harmonic #™%, K
is the compressibility parameter, u is the chemical potential, and €f =38.7 MeV. The po-
sition of the giant dipole resonance is thus determined by not only the symmetry energy
{3 but also other parameters of the mass formula.
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FIG. 1. Dependence of the calculated position of the giant dipole resonance on the mass number A4
and comparison with the experimental data from Ref. 7 (shown by the circle). Crosses—Results cal-
culated with shell-model densities and the Woods-Saxon potential® ; iriangles—results calculated with
allowance for pairing. Asymptotic curves arc also shown: Dashed curve—For the Goldhaber-Teller
model; dot-dashed curve—for the Steinwedel-Jensen model® ; solid curve—results of the present calcula-
tions.
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o FIG. 2. The quadrupole moment @, , in units
P of ZR?, as a function of the relative splitting of
// the giant dipole resonance in deformed nuclei.
Solid line (bisector)--Predictions of the present
paper; dashed line—predictions of the hydro-
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show the scatter in the values of @,/ZR* due
to the uncertainty in the values of R =r 4"

v (1.15<r, <£1.25 F). The experimental data on
Vi Q, and Aw/wgpr are taken from Ref. 7 for
a7 I ; the following nuclei: ¥°Nd, 5%'**48m, **Eu,
l o1 02 03 ’ 159 Th 160 G4 465 Ho, 175 Ly, 12! Ta, 136W, 232 Th,
Aw/w’(,'iDR 235,238 U, and 237 Np.

The approach can also be used to describe the splitting of the giant dipole resonance
in deformed nuclei. It can be seen from (3) that the oscillation frequency (or the stiff-
ness) depends on the direction of the external field. For axisymmetric nuclei, in first or-
der in the deformation, we find the relationship

Aw/w‘éDR = Qo/ZRz, . (6)

where @ is the quadrupole moment of the ground state, Aw is the distance between the
maxima on the photoabsorption curve, and w$ g is the position of the resonance for the
spherical nucleus of equivalent volume. It can be seen from Fig. 2 that this refation
agrees satisfactorily with the data available. We can draw the general conclusion, in con-
tradiction of a widely held opinion, that the giant dipole resonance in nuclei corresponds
to a surface (shear) rather than volume (zero-sound) oscillation mode. In macroscopic
terms, these results contradict the Steinwedel-Jensen hydrodynamic model,® but at the
same time they may be regarded as a microscopic justification for the Goldhaber-Teller
model.?

For systems having a Coulomb attraction between particles of different species
(plasmas or metals) we find from (2)

et 7dpt 1 dp® e ; d° ¢Te' ’
ms = —— | 57— "*",):~ el Ll ()
2utidx lr—r'| dx 2u dx
where u=mgom;/(m, +m;) is the reduced mass of the electron and ion, and ¢° is the elec-

trostatic electron potential. For simple geometries we can use the Poisson equation, A¢®
=-4mep®, directly, and for the average energy of the dipole transitions we find

wp = W,/ ®)

where w), = (4ne® p®/u)"’? is the plasma frequency, and v is a geometric factor, equal to I,
V2, and /3 for planar, cylindrical, and spherical systems, respectively. These results are
quite well known in the physics of aerosols.

In a corresponding way we can find the average frequency of the dipole transitions
in an atom:
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where Z,, is the number of electrons, Z is the number of protons in the nucleus, and p¢(0)
is the electron density at the center of the nucleus. For estimates we can use hydrogen-
like wave functions and consider the contribution of only two s electrons to p®(0). In
this case, for a neutral atom, we find

—_—

8
wp = ~3mee“Za’2 ~ 44,4 73 (eV). (10)

The results of exact calculations will be reported in detail separately.
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