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The cyclotron-resonance spectra of hot holes in germanium have been measured
at the wavelength 4 = 1.65 mm in a constant electric field ELH|| [001]. These
are the first reported measurements of this type. The results reveal an
overpopulation, effects of a nonparabolic light-hole dispersion law, a cutoff of
the light-hole cyclotron resonance at E > 500 V/cm, and the appearance of even
harmonics of the heavy-hole cyclotron frequency.

PACS numbers: 76.40. + b

1. Hot-hole effects in germanium’ = have attracted interest because of the associated
possibility of arranging a negative differential conductivity at wavelengths 2 mm >\ >0.05
mm. This negative conductivity would result from an inversion of heavy holes in terms of
the cyclotron-revolution energy in fields®’ E L H and E Il H (this is a classical analog of an
inversion in terms of Landau levels) and from that inversion of direct optical transitions
between heavy and light subbands which occurs in fields E L H and which is accompanied
by an increase in the light-hole concentration to a point above its equilibrium value.®
Extensive information on the properties of holes in strong electric and magnetic fields can
be obtained by the cyclotron-resonance method, which can be used to study light and
heavy holes separately, to determine their concentrations and relaxation times in a con-
stant electric field,” to find effects resulting from the complex dispersion law, and, finally,
to determine the absorption of germanium under conditions favoring a cyclotron-reson-
ance negative differential conductivity.

In this letter we are reporting the first results of backward-wave-tube spectroscopy
involving the cyclotron resonance of hot holes in Ge(Ga) at the wavelength A =1.65 mm,
at 72 10-30 K, in electric fields up to 1 kV/cm.

2. In the experiments, the absorption of the millimeter-wave radiation from a back-
ward-wave tube is measured in p-type germanium in a constant external magnetic field
and a pulsed external electric field. The radiation propagates through a quasioptical sys-
tem to a sample of square cross section, cut along [100] crystallographic axes. The sam-
ple is in a helium cryostat, at the center of a superconducting solenoid (p =4 X 103
em™ N4 +Np~10" cm™). A plane face of the sample with an area of 4.7 X 4.7 mm?
is oriented perpendicular to the magnetic field and to the wave vector of the millimeter-
wave radiation. A voltage pulse (7, = 10 us, frep = 3.3 Hz) applied to opposite faces with
areas of 4.7 X 0.7 mm? jonizes acceptors,? giving rise to a modulation of the millimeter-
wave radiation propagating through the sample. The output signal from an n-InSb de-
tector below the sample is converted by a strobe integrator and recorded on a chart re-
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corder. The signal is stored in the strobe integrator at the time of arrival of a strobe
pulse, synchronized with the voltage pulse.

3. Figure 1 shows some typical cyclotron-resonance spectra. Spectrum « is that of
equilibrium holes; it was obtained by applying the strobe pulse immediately after the vol-
tage pulse, u/l=1300 V/cm (I=0.47 c¢m is the length of the sample). This voltage pulse
heated the lattice to 7= 30 K (according to an estimate for adiabatic heating), so that
essentially all the acceptors were ionized® (see the inset in Fig. 1). Spectra b-d corre-
spond to coincident strobe and voltage pulses. In this case we can evaluate the ratio of
the number of light holes at « =0 (p, ;) and u#0 (p;), taking the integrated intensity of
the cyclotron-resonance line to be proportional to the hole concentration, [{(H)dH ~ p.

The results show that the light-hole concentration begins to exceed its equilibrium
value (py/po ;> 1) even at moderate electric fields, u/l~100 V/cm (Fig. 2). Overpopula-
tion effects in such fields have not been discussed or, apparently, observed previously.
The overpopulation remains up to strong electric fields, at which v, ~0.3v;~ v, [here
ve=cE/H, v, =(2hwo /my, Y2, my y, are the effective masses of the light and heavy
holes, and hew, is the energy of the optical phonon]. In such fields the overpopulation
results from the intense scattering of heavy holes by optical phonons, which increases the
rate of transitions from heavy to light holes; the number of inverse transitions is small be-
cause of the magnetization of the light holes.’
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At fields 1/l >500 V/cm there is a decrease in the line intensity (a cutoff of the
cyclotron resonance), because of an increase in the relative number of the holes which are
“demagnetized,” i.e., which reach an energy €= hw, over a time shorter than the wave
period, are scattered by a phonon, and thus do not participate in the cyclotron resonance.
These events are accompanied by a decrease in the total number of light holes and by a
disappearance of the overpopulation.’

4. With increasing electric field, the light-hole cyclotron-resonance line is observed to
shift toward a stronger magnetic field: AH/H~ 20% at v, ~0.5v;. Calculations show that
this effect results from the deviation from a parabolic dispersion law for the light holes,
which is manifested during the heating of the carriers. In a strong electric field some of
the holes reach an energy € ~hcwy, at which their mass increases significantly, during the
cyclotron-revolution period. At v.=0.5v,, the cyclotron frequency of such holes is 8%
lower than that of the holes which are revolving at energies € ~3/2 kT=0.1 hw, with
I'=30K and £=0. The shift of the cyclotron-resonance peak in the electric field is
caused by both a decrease in the average value of w, and a change in the line shape'®
caused by the dependence of w, on the hole oscillation energy. Estimates show that
both of these effects shift the peak by 15%, if it is assumed that at e <hw, the holes are
localized around a trajectory in momentum space which passes through € =0 (a principal
trajectory), as a result of inelastic scattering by optical phonons. The good agreement of
this estimate with experiment may be regarded as indirect evidence for the occurrence, at
u/1>500 V/cem, of a localized distribution of this sort, which is a distribution with an in-
version in terms of the cyclotron-revolution energy !

5. The spectra in Fig. 1 reveal the appearance and intensification of the second and
fourth harmonics of the heavy-hole cyclotron resonance, along with a decrease in the in-
tensity of the third harmonic, with increasing electric field. We know that with H Il [001]
and £ =0 the cyclotron-resonance spectrum of the heavy holes, with their anisotropic dis-
persion law, has only odd harmonics, because of the fourfold symmetry of the free-mo-
tion trajectories (Fig. 3). In an external electric field E [[ [100] this symmetry is dis-
rupted; the intensities of the odd harmonics of the cyclotron revolution change; even
harmonics appear; and we see evidence that the cyclotron revolution of the holes is not
isochronous.”!? Even harmonics appeared experimentally even at low drift velocities,
v.~0.1v, (Fig. 1). At v,>0.5vy, the nonisochronous revolution of the holes occurs:
The second cyclotron harmonic of the heavy holes shifts 10% toward stronger magnetic
fields at v, =0.45 v;,.
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FIG. 3. Free-motion trajectories of heavy holes
in the p, =0 plane in momentum space for
energies e < hw,. H 1 [001], E il [100} ,E/H
=0.1 V/(cm - Oe). Dashed curves—E=0. p,
=(2mphw,)"?, where my =0.32m, .
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It would be very interesting to see a further study of the hot-hole cyclotron reso-
nance in pure germanium samples. We may expect that when an inversion in terms of the
cyclotronrevolution energy is reached, the nonisochronous revolution of the holes [due
to the nonparabolic nature of e(p) in the case of the light holes or due to the anisotropy
of e(p) in the case of the heavy holes] will give rise to a cyclotron-revolution, negative-
differential conductivity in crossed fields E 1 H.

We wish to thank A. A. Andronov for constant interest in this work and for many
discussions, and we thank V. N. Murzin, A. P. Chebotarev, and V. N. Shastin for a discus-
sion of these results.

D1t has been determined elsewhere that at T=4.2 K there is essentially full ionization of the shallow
impurities in p-Ge (p ~ 10" cm~?) in fields £ ~ 20-40 V/cm (see Ref. 1, for example).

2The characteristic thermalization time for the holes at the end of the field pulse is 107 s. The sub-
sequent cooling of the sample and the corresponding freezing of the holes occur in a time 2,10'3 s.
The hole concentration after the field pulse depends on the energy imparted to the sample by the elec-
tric field; for pulses 10 us long, the hole concentration reaches saturation at u/l > 900 V/cm, as was
verified from the cyclotron resonance.
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