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An analysis shows that stable localized states of fluxons can exist in a long
Josephson junction with local inhomogeneities. A qualitative study is made of
their spectrum. A change in the external magnetic field at the edge of the
junction may cause, in addition to gradual changes in these states, abrupt
changes to other states near bifurcation points in the spectrum.

PACS numbers: 74.50. +r

We do not have an adequate theory for the interaction of solitons (fluxons) in long
Josephson junctions with inhomogeneities, which are of considerable interest for applica-
tions.!"® Anexact solution has been derived for the problem of the static distributions of
the magnetic flux ®(x) in a uniform long Josephson junction of finite size,* and perturba-
tion theory has been used to study the interaction of a fluxon with an inhomogeneity
which is a repulsive barrier.!*®* In the present letter we will show that static states of long
Josephson junctions [i.e., ®(x) distributions] of a new type arise if the junctions contain
attractive inhomogeneities. These new states have some physical properties of applied
interest. They cannot be derived by perturbation theory.

It has been established elsewhere that the propagation of fluxons in a long Josephson
junction is described by the equation (¢, = 0% ¢/dx?, etc.)

L(L™ '), — LCh, — X, (x)sind = T, — By + 7> (1)

where ¢(x, £)= 2nd(x, £)/®q; P, is the quantum of magnetic flux; A} =®,/2nLly; L, C,
and/, are respectively the inductance, capacitance, and critical Josephson current per unit
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length; the parameters @ and § describe the dissipation; and ¥ describes the external cur-
rent (see Ref. 1 for a detailed description of long Josephson junctions, a derivation of this
equation, and the standard notation). Equation (1) must be supplemented with bound-
ary conditions. For an infinite junction, for example, we would use ¢(*=, ¢)=2nN,, where
N, are integers; for a semi-infinite junction (0<x <+=), we would use ¢,.(0, £)=hk, and
o(+=, t)=2aN,, where hy is the external field at the end of the junction. We consider
inhomogeneities which are determined by the local change in A;{x) over intervals short

in comparison with the value of A; in the homogeneous regions. Such inhomogeneities
could be produced by arranging local changes in I, at a constant value of L. In this case,
a static (¢,=0) state of the junction with =0 can be described by the equation

. n \
9" = {l - 2 uSex —‘xi)jsin ¢ x<x,. . ?)
=1

where ¢' = ¢y, ¢" = ¢y, and A, is adopted as the unit of length. With ;<0 (an increase
in 1), an inhomogeneity is a “microscopic short circuit,” while at ;>0 (a decrease in
I,) the inhomogeneity is a “microscopic resistance,” and we will assume below that the
condition ;< 1 holds. In perturbation-theory terms we might say that the microscopic
short circuit repels a fluxon, while the microscopic resistance attracts it.

Using the known exact solutions of Eq. (2) for the homogeneous regions® along with
the conditions on the jump in the magnetic field ¢’ at the points x;, we can reduce the
problem of solving (2) with arbitrary boundary conditions to the problem of determining
the roots of a transcendental equation—a very complicated one, in general. Correspond-
ing to each of these roots is a state of the long Josephson junction, and the number of
roots depends in a nontrivial way on the parameters x;, u;, and ho. As these parameters
are changed, new states may be generated (a bifurcation). New branches appear in the
energy spectrum, determined from

X

n i+1 n
C=% [ aq¢?/2+20°@D]— T 2usin (0 )/2) ©
i=o x; i=1

these new branches correspond to the appearance of at least two energy-degenerate solu-
tions (some simple examples of this effect were studied in Refs. 5 and 6 on the basis of

a different model). The few lowest-energy states are usually stable with respect to small
fluctuations and may exist for an unlimited time. Of particular interest for applications
is the possibility of continuously controlling these states, by (for exampie) changing the
magnetic field kg far from the bifurcations and by arranging a rapid switching to a state
with a lower energy at a bifurcation point. The details will be published separately; here
we wish to discuss some simple examples which give a clear picture of the basic effects.

For a study of the qualitative nature of the states of the junction it is convenient to
use a (¢, ¢') diagram, as in Fig. 1, making use of the fact that the quantity

9’24 —sin®(p/2)=k* - 1= ¢ 4

is conserved in the homogeneous regions. The state is described by a curve consisting of
arcs of constant values of k. At the points x;, the field ¢’ changes abruptly by an amount
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FIG. 1.

-u; sing(x;), and there is a corresponding abrupt change in k. The solution in the homo-
geneous region can be written in the form cos(¢/2)=-k sn(x +x,, k), where sn is the Ja-
cobian elliptic sine.” For an infinite junction with a single microscopic resistance, u; at
the point x =x; =0, the only solutions which exist (aside from $=0) are those corres-
ponding to the curves OFQ' and O'FQ, which describe a bound state of an undistorted
fluxon or antifluxon, localized at the point x =0 [¢(0)= =], with an energy &,-2u,,
where &, is the energy of a free fluxon at rest. States of this sort atso exist in a Joseph-
son junction of finite size (curves BEB and BEB in Fig. 1). For a microscopic short cir-
cuit, such solutions do exist formally, but the corresponding states are unstable: The
fluxon is repelled and moves away from the microscopic short. Even this simple example
demonstrates the important advantages of the microscopic resistance over the microscop-
ic short circuit for applications involving the storage and switching of fluxons in long
Josephson junctions (cf. Refs. 1 and 2). A fluxon can be localized precisely near a mic-
roscopic resistance; the position of its center is stable with respect to fluctuations, and
the oscillations which arise have a small amplitude and are rapidly damped. In contrast, a
fluxon trapped between two microscopic short circuits may oscillate with a significant
amplitude around an equilibrium position. In order to suppress this oscillation, it will be
necessary to increase the parameters @ and §, but this measure would degrade the charac-
teristics of the junction. Localized states in more complex systems with microscopic re-
sistances have similar properties.

In addition, some other effects arise in these more complicated systems. To illus-
trate these effects, we consider the case of a semi-infinite junction with a microscopic
resistance u, at the point x,. If g =0, then (aside from the ground state, $=0) there
can be only states of the type BB,B,0" and BE, B,0, which arise at sufficiently large
values x; = x,, (1), and x,,, is a bifurcation point. (Asx; is increased further, solutions
appear in which the magnetic field oscillates in the interval 0<<x <x.) States of this
type also exist in the case 21y # 0 (BoB1B,0" and FyF, F,0). In this case, the energy de-
generacy of the states of the soliton and antisoliton types is lifted, and the energy of the
antisoliton state FoF, F, O may even be lower than the energy of the soliton state
BB, B,0'. If hy =2/coshy, , there may exist a stable, bound fluxon state F, FO for
which ¢(x, )= and which is localized at the point x,. As A, is changed, this state
changes smoothly into a state of the type BoB, 8,0  orA*ATA30'. To show how a rap-
id switching may arise, we note that in the present case the transcendental equation writ-
ten above takes the form
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kosn(xy + xo, ko) = (ko) = cos(¢(xy)/2), 5)

where c(ky) is the solution of the equation for the discontinuity ¢’ at the point x,,
me(l ~c®)Y2+pe)=1-k2 = — ¢ lel< 1, (©)

and x, is eliminated with the help of the boundary condition #y =2kcn(xg, ko). There
is a state corresponding to each root ko (x4, My, Hp). The energy of each such state can
be calculated easily from (3) and (4), by making use of the conditions K=k, at x <x;
and k=1 atx>x;. Equation (6) has two roots, c., if le{<e,,, where ¢,, = e(c,, ) and
cm is the root of the equation de/dc,, =0. With e=+%¢,,, the two roots meige, and at
leI>e,, they vanish. The value k3 =k2, =1 +¢, corresponds to a nontrivial bifurcation
point along hy, at kg = h,, if ¢(0)= 7, so that the total flux across the junction is precisely
equal to the quantum of flux,®,. If u; and x; are such that at by =h,,, there is a state
AyA 14,0 corresponding to ko =k,,, then at ko >h,,, this state splits into A* 41450’
and A"A7A430', and there is a rapid switching at #<h,,,. Working in a similar way, we
can find a bifuraction at which the solution C,C; C,0, with the minimum energy and
magnetic field, vanishes. This state arises when, with increasing %, the total flux reaches
the value ®,/2 (the state £B, B,0").

In summary, the most important distinctive property of long Josephson junctions
with microscopic resistances is the existence of rigidly localized, bound states of the mag-
netic flux. An attempt might be made to observe these states directly, by measuring the
distribution ®(x) along the junction, or indirectly, by detecting the oscillations in a bound
fluxon caused by small external perturbations. The fundamental frequency of this oscil-
lation, wy, depends on only u;, x;, and ki, (for the state FoFO', for example, with a small
value of hy we would have wo ~/p; /2). The existence of bound states and the exis-
tence of bifurcations along k, distinguish the dependence of the maximum Josephson
current I, (ko) from the corresponding dependence for a homogeneous long Josephson
junction.* The rapid switching at the bifurcation point upon a slow change in %, can
lead to microwave emission. The characteristics of all these effects are determined by the
parameters of the static solutions. It would also be interesting to study the voltage-cur-
rent characteristics and microwave properties of this system. The corresponding calcula-
tions would require studying the solutions of the time-varying equation in (1)
and using the static solutions which have now been found.
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