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The concept of a measure of incompleteness of a statistical description in the
presence of irreversible processes is introduced. A generalized FDR, which is valid
for nonequilibrium processes, is formulated starting with the density matrix of the
macroscopic system. The FDR is obtained on the basis of this relation for a gas, and
a fluctuation formulation of the Boltzmann collision integral is proposed.

PACS numbers: 05.40. + j, 05.20. — y, 05.70.Ln

We are examining a macroscopic system consisting of N particles with the Hamil-
tonian H,. X (¢} is a collection of all coordinates and momenta of the particles, while y
is a point in the 6N-dimensional phase space. We introduce two distribution functions
in phase space: a microscopic function fx(y,t) = 8(y — X (¢)), which depends not only
on y but also on X (¢), and a distribution function that is averaged over the ensemble
fultst) = ¥ (vt )]). We define a single-time correlation function 8fy = f — fy

For a complete mechanical description, when f = f, it is equal to zero, while for an
incomplete description, it serves as a measure of the incompletenesss of the statistical
description.

In quantum theory, we examine two corresponding density matrices:

M =Wt _fora pure ensemble (# is the set of quantum numbers of the particles in

the system); £,,, = (f™,) for the mixed ensemble. As a measure of the incompleteness

of the statistical description, we choose the single-time correlation function
e =S — fum» corresponding to (1),

(8fnm(t)6fn,m,(t}) =6nm,fn,m‘—fnmfn,ml : (2)

The correlation functions of the commuting operators for a pure ensemble, determined
with the help of (2), are equal to zero. We use appropriate boundary conditions for the
two-time correlation function

0 .
(Ft * AT iy ) CBudff g 0 E>1 @
For an incomplete description (mixed ensemble), it has, with the initial ( = ¢’) condi-
tion {2), a nonvanishing solution. Using this solution, we find an expression for the

spectral density. If f,,, =94,,./,, we have
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Ofym®y m o =W = @, Wy 8, (£ +f,): (4

This expression can be rewritten in the form of an FDR

fm +fn
f,-f

((anmzsfn1 m, ) = hImAnmnl m, (w)

Here we have introduced the corresponding susceptibility

1 fm_fn
A"m"nm:(w)—~ E ””18”””1 wHid - w ) (6)

If £, is the canonical Gibbs distribution, then the most general FDR for fluctuations of
a multiparticle density matrix for the equilibrium state of a macroscopic system fol-
lows from (5):

o
(anmafn,m,)w = hImAnmnlml(w)cth o,

With its help, it is possible to obtain the well-known Callen-Welton equation (§ 124 in
Ref. 1), as well as a new FDR, for example, for a Boltzmann gas.

- )

It is important that the FDR, expressed in the form (5), can also be used for
nonequilibrium states with density matrix f,,,, (¢ ) = 8,,,./.(t). The function f, in this
case satisfies a kinetic equation for a multlpartlcle distribution function f,(¢). This
equation describes relaxation to a canonical Gibbs distribution. The kinetic equation
for the multiparticle distribution function was first introduced by Leontovich.” For the
Boltzmann gas, Leontovich’s equation describes relaxation to a multidimensional
Maxwellian distribution. In Ref. 3, an equation, which describes relaxation to a Gibbs
distribution due to a fluctuation electromagnetic interaction, was obtained.

The FDR for a Boltzmann gas follows from Eqs. {5) and (6):

He) )
(sfpx P Sfplpl' )"" =hImAp‘p" () fl(Pl, )_fl(pl) ' (8)
1 hHpi)— fi(py) )
App; @ )'_"ﬁh(wnA) (Ey —Ep)’ By = pfom ¥

The distribution function fi(p,,¢ ) satisfies the Boltzmann equation. Substituting a Max-
well distribution into (8) and (9), we obtain the FDR for an equilibrium gas.

If the FDR (5) and (8) are used for nonequilibrium states, the quantity A4, which
determines the width of the functions 8{w — w,,,,), and 8w — (E, — Ep{)/h), satisfies

the collisionless approximation condition 47> 1, in which 7, is the corresponding
time for relaxation to equilibrium.

Starting from the FDR (8) and (9), we can introduce a fluctuation representation
for the Boltzmann collision integral
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1
pso )= 5oy dordkdpi Sk — (pipr)b(hes — (B, —,0))

(10
AGUSU, 4 o, oo (0D — Fu(@1)) — hlm Dfco, k. py + )3 () + £1(p1))]

This equation contains an expression for the spectral density of fluctuations in the
potential, corresponding to the scattering problem

5UPfo (W)=NIT(p1p2, p1p2)5(p1 +p2 — py — plz)ﬁfp'zp (W) ——,dp,dp’s -

vV

3
(2mh) (1)
Equations for the spectral density of fluciuations U and the imaginary part of the
corresponding susceptibility ImD (w,p,,p;) follow from (8) and (11). These functions
depend not only on @ and k = (p; — p{ )/#, but also on p, + p{. The later dependence
disappears only in the approximation of perturbation theory, when the 7" matrix is
related to the Fourier component of the interaction potential by the equality

(‘Pl - P '> (2nhy’
h | 4

T(p1P2, PP2) = — ¥ 5(p; +p2 — Pt — P2) {12)

vV

Using the fluctuation representation of the Boltzmann collision integral, it is
possible to obtain an expression for the collision integral, which incorporates simulta-
neously both the strong pair collisions at small distances and weak, collective interac-
tions at large distances. To accomplish this, we define the corresponding dielectric
permittivity

€ , =1+ d
(w,p1,P1) (2 h)3 dp,dp" ’

| T @iz, Pip2)!° 81 +p2 — P — P2)APL) - AP2))

; (13)
Ip1 — .
(l__ﬁl_)) h(w +id) - (B, —E, )

Polarization can be incorporated into the Boltzmann collision integral (using the usual
representation) by introducing into the integrand an expression for the symmetrized
polarization factor

1 -2
3“6("09"1?‘),1)' + |€(waP2,P’2)|_2]~ (14)

The generalized expression obtained in this manner for the collision integral uni-
fies the Boltzmann approximation and the polarization approximation, which for a
Coulomb system corresponds to the Balescu-Lenard collision integral.**> Of the num-
ber of possible solutions, the solution of this problem (§ 46 in Ref. 4 and § 56 in Ref. 5)
proposed by us is internally most consistent. This consistency is necessary, in particu-
lar, when nonideality effects are taken into account in kinetic equations.’
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Strong and weak collective interactions must be taken into account simultaneous-
ly in many cases: in the kinetic theory of spectral-line broadening, in the kinetic theory
of partially ionized plasma, and so on.®?

The measure of incompleteness of the statistical description introduced above is
important not only in the statistical theory of many particles but also in guantum-
mechanical problems such as those in the theory of quantum transitions.

I take this opportunity to thank L. M. Gorbunov for his attention and interest in
the present work.
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