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It is shown that the axially symmetrical solutions of the Heisenberg model in two-
dimensional space can be described by the method of the inverse problem. Infinite
series are found for the nonlocal conservation laws and exact solutions. The
absence of spatially localized solutions is proved.

PACS numbers: 75.10.Jm

The equation of the Heisenberg model that describes the motion of the magnetiza-
tion vector S in a magnetic field H has the form

S, =[8S,A8]+[H,S]. (1)

This equation was investigated in detail for the one-dimensional case in Refs. 1 and 2
by the method of the inverse scattering problem. For the case with a larger number of
spatial variables, this equation apparently is not integrable. We shall show that in the
two-dimensional case, assurning that the solution is axially symmetrical, the method of
the inverse problem is applicable to this model, which permits describing its solution
with the same completeness as in the one-dimensional case.

1. Let x,; and x, be Cartesian coordinates in the plane. We shall assume that S
depends only on # and x = (x + x3)/4. In this case Eq. (1) can be written in the form

A~B 4[4 B]=0, 2
(o5, B]+2i (x4) =0,
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where
.. /2o, (i/ YHos
A =gxg",B=gtg'1, 2iS = 0S=e 2 o ge ,
and g is chosen so that g*g = I and diag 4 =0.

The system of equations (2) comprises the consistency conditions for two linear
equations for the matrix ¢:

b]
— Y =(iXo; +A4) ¢>» (3)
ox
]
—a-?-\}/=(2i7\"x03+2)\‘xA+B)l}/-, (4)
where 4 = — [2(¢ + «)] ' and u is a spectral parameter in the plane C.

2. We shall first calculate the conservation laws for Eq. (2). We shall assume that
S (x, t,) differs considerably from 03/2i only in a bounded region with characteristic
size R,. The fundamental solution of the system (3) and (4) can be represented in the
form

¥ =glx, t)ylx, t, ulexp(ilo;x),

where
Yloo, t, u)=1
From (3) and (4) it follows that y satisfies the equations
9 _ ) )
3‘; X =—2ASx—iAx o3, Ex(o,t, u)=20 (5)

and can be expanded in the series

xx, tuy=1+ ZX,,(x,t)u‘"'

nx>1

The coefficients y, (x, ¢) are easily calculated and at x = 0 do not depend on time. The
first two integrals I, = y,(0, ¢) have the form

o

Li=7(S(x, t)~ 05/2i )dx
[

o0 oo

I,=tl; + [ fdx,dx,0 (x,—-x,) (6)
0 0

[SCx1 )S(x2, 1) — (S (x4, £)+ S (x4, t)) 03/2i —1/4].

The integral I, has the meaning of a magnetic moment. We shall examine the integral
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J=tr(1,05/2i ) =(t/2)f (1—S3)dx
0

oo 00

+ ff dxldx20 (x; _'xl) [s(xly t.),S(X2, t)]3'

[

The first term is positive definite and increases linearly with time, so that the localiza-
tion radius of the solution must increase with time, since otherwise the second term
would remain bounded. In other words, “maguon-drop”’-type solutions do not exist.
Any fluctuation in the initially localized magnetization, which depends only on the
distance to the origin of coordinates, spreads out. Of course, we assume that the
integrals I, and I, converge.

3. The solution of the Cauchy problem reduces to the direct and inverse scattering
problems for the operator (3) on the semiaxis x >0. We shall assume that the initial
data A4 (x, 0) are bounded, together with the derivative, and are integrable
(5 |d ldx < ).

We shall examine two sets of fundamental solutions @, and @ of Eq. (3), deter-
mined by the following conditions:
Po (X, 1, M), . 0=1 » @ (x, 5, A) > exp(iAo3x) for x > +oo - (7)
These solutions are linearly dependent
o (x, 2, \) =P, (x, , M) T (¢, 1) (8)

and the matrix T'(¢, 4 ) is called the scattering matrix. Using Eq. (4), we can show that

A 1
T ,)\, = > - T . 9
(. %) T<0 1+2t7\)T (0 Zt) ®)

In other words, T'(¢, A ) is completely determined by its initial value. The matrix T'(¢, 1)
carries all information concerning the potential 4. Reconstruction of the potential A4 (x,
t) can be reduced to a Weiner-Hopf equation. Of course, the matrix 7" and the func-
tions @, and @, have certain analytical properties and special asymptotic behavior,
which we shall use in deriving this equation, but cannot present here. Let F{(z,
A)=T—1Iand f= & exp( — ido,x) — I. Then, the Fourier transformation

e iNo & A dA
F(r,g)=1/ e F(t,>\)—2"—,
0 ¥ig

~inogk AN ‘ (10)

oot gy=10 fex, 6,0 e 2n

— 0

is cut-off for £ <0, while for £> 0 it satisfies the equation

f(x!t'£)+f f(x,t,E')Fl(t,.:'—t)dg'
o £ . (11)
+ffCx, t, EVF(62x+EFE)AE + F (8 2x+ £) =0,
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where F,(t, £} and F,(t, £) represent the diagonal and antidiagonal parts of the matrix

F. The function g(x, t) is reconstructed from the solution of this equation
o0

glxt)=® (x, , )| =I+] f(x,1 E)dE. (12)
A=0 )}

We note that at the point x = 0, the function g(0, ¢} is determined explicitly from T'(0,
A) without solving Eq. (11):

g 1) =T@©Y, )¢ 00. (13)

4. Equations (9) and (11) make it possible to examine the asymptotic behavior of
the solution of the Cauchy problem for |# |—> 0 and fixed x. It follows from (9) that F A
A )0 for t->0 and

F(t,8) =17 exp(—i0o3§/2t)Fy + O (+7®), Fy=const . (14)
Solving (11) in the zeroth-order approximation and substituting it into (12), we obtain
io, % — % tHoy

~L
. - = S tH
2iS=o5+1te [0, 80}e 2 03*'0(1‘_2), go =const. (15)

Thus, for finite x and |# |— o, the solution approaches the unperturbed solution and at
the same time the rate and amplitude of precession decrease, consistent with the con-
clusion arrived at in Sec. 2.

5. The method of the inverse problem allows constructing a series of exact solu-
tions of Eq. {2) using a standard method.>* The wave function #{x, ¢, 1) for the N
soliton solution is represented in the form

No— A

yy=1 <1 + ——_{_Pi (x, t 9exp(i)\o3x), (16)
i <N T '

where

ni(x,1) nf(x,1)

Zin)(x, t)?

Y

PP (x, 1) =
(17)

B I

ng (x,0)= 9, (x4 N )ng, \; = 20 +u )

The complex numbers u, and n),/n}, are arbitrary parameters of the solution. From
the value of ¥(x, t, A yat 1 = 0, it is easy to find S {x, ¢) in the simplest case of a single-
soliton solution
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o o4 iX
S1+1.S‘2—t2+a2( it+tathy) e*/chg,
S.=1 2a? 1
=1- ’
3 2+a? cho (18)
X tx + ax +
Thigar P Y Ty Y

where a, p, and g are arbitrary, real parameters. This solution illustrates the conclu-
sions arrived at in Secs. 2 and 4 concerning the spreading of localized perturbations.
Solitons represent a ring wave, whose radius and thickness increase linearly with time
(for large ¢), while the amplitude decreases like ¢ ~! for fixed x.

6. In a number of papers (see, for example, Ref. 5), a term describing the aniso-
tropy of the interaction is added to Eq. (1), and in addition to the axial symmetry, it is
assumed that the solution has a simple time dependence (uniform precession)

g =exp(—io, 8(r Yexp(wros/2i ). (19)

In this case, “magnon-drop”-type solutions which decrease rapidly with r for drop
sizes greater than some characteristic R, were found. In the isotropic case, R, = oo,
while 6 (r) satisfies the equation

9’ a
—-—~6+“——'—’—6 + wsin 6 =0, (20)
or? s or

which has nonsingular solutions that decrease in space. For large r, these solutions
have the asymptotic form

r N
0 _.cos —=—03Ilnr te; V+O(r3 ), (21)
\/r w /

Because of the slow decrease of the solution, the integrals of the energy and of the
magnetic moment diverge and, in addition, it is not integrable in the sense of the norm
introduced in Sec. 3; for this reason, it does not fall into the class being studied. The
scattering matrix 7°(0, A ) in this case has an essential singularity

T(0, 1) = geexplioso/44)gy ',

which must be taken into account in deriving the equations of the inverse problem. In
conclusion, we thank E. 1. Rashba for a discussion of the results.
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