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The convective stimulated-Brillouin-scattering instability, which is usually
considered in the case of an inhomogeneous low-density plasma, occurs only if the
dissipation of sound is rapid. If this dissipation is only slight, an absolute
stimulated-Brillouin-scattering instability occurs.

PACS numbers: 52.35.Py, 52.35.Dm

Experiments on stimulated Brillouin (or ‘““Mandel’shtam-Brillouin”) scattering in
an inhomogeneous plasma are usually interpreted in terms of a convective instabil-
ity,"? while an absolute stimulated-Brillouin-scattering instability occurs in a slab of a
spatially homogeneous plasma.® In this paper we will resolve this contradiction of the
theory by determining the range of applicability of the convective-instability argu-
ments. We will see that an absolute instability can occur in a slab of a spatially inho-
mogeneous plasma, working in the particular case of stimulated Brillouin backscatter-
ing.

To analyze stimulated Brillouin backscattering in a nonisothermal (T, > T,), low-
density, inhomogeneous plasma [n,(x)<n, = mwj/4me’] we will use the geometric-
optics approximation. We write the electromagnetic field as

pd

Zy =Re{Eo\/ko/ kofx) exp[i f kof ' Jdx ' —icwot ]

x
+ Ey(x )V Kifky(x ) exp[—i [ kyf x')dx'—i(wo — w)t]}.

Here w, is the frequency, ky(x) = (@y/c) /1 —n.(x)/n, and k, = @,/c are the wave
vectors in the plasma and in vacuum, and Ej is the given amplitude of the pump field
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incident on the plasma. The subscript 1 refers to the scattered wave. We are to derive
the grain K = E,( — o )/E,( + ). The beats of the incident and scattered waves reso-
nant with the acoustic wave, with frequency w and wave vector k, = w/v,, where v is
the sound velocity. This interaction is strongest near the resonance points, where
ko(x) + k,{x) = k,. For a bell-shaped profile (Fig. 1), there are two such points: x,; and
x,. Writing the density perturbation as 8n(x, t) = — in (x)[v,(x)explik,x — iwt) — c.c.],
we find the following truncated equations for the amplitudes E,(x) and v,(x):

E!=—(}2)koaEyv, exp(—i®),

Vi(x)+(T,+ a'/ 2a) v = koEoE;* (16 mn k D7 exp(—i D-

Here @ (x) = " Ak (x')dx’, I', = y,/v, is the spatial damping rate of the sound, «y is
the Boltzmann constant, a(x) = [n./n,(x) — 11" '=n,/n_, Ak (x) = kox) + k,(x) — k,
=kyla, — alx)), and a; =2 — w/kyv,. Finally, for the function

s(x) =vi(x) exp[ —(i /2); dc(Ak +iT /2 +ia’ [4a]
the truncated equations yield s” 4 U(x) s = 0, where
Ux) =Yyl k3T afx) +(a'/a)' +2I) —2ikea'(x)
+k?,(a(,—a—il“s/ko—ia'/2koa)2],

and I = |E,|*/8un ky T. The geometric-optics approximation holds over nearly the
entire plasma volume:

X X
s(x) =AV V% exp(if U2 dx) + BU ™M *exp (—if U 2dx).

It does not hold near the resonant points. To find the relationships among the coeffi-
cients 4 and B in regions I, 11, and III (Fig. 1), we use a linear approximation of the
plasma density profile near the resonant points: a(x)~ay[l + (x — x,,)/L,,]. This
approach allows us to express s(x) in terms of parabolic cylinder functions; then, work-
ing in the standard manner,* we can use the asymptotic expansions to derive the
following relationships among the coefficients:

Aneiwl - Alew.J' y Ay e™V? - - Ay ei\.pz
-y | = ~iv | B e-i¥ = -iy, |,
\Bne 1 Be "1 meé 2 Bye 2

where the elements of the transition matrix M 7 (o =sign L,,) are

— 1+ o
MS, = _2‘;*=\/21TI"1<H¢+ . >

X exp {~1rx/2+ inof/4+ i(k—io/2)-1+In(k —io/2)]}

My, = M7,° = oexp(—mk)
and
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Uiz =J dxU'?(x), X12 =x10—1L 1 2/2a0— (i [2a0ko) (l+2I‘s(x1,2)L 1.2).

In the complex x plane, the function U '/%(x) is determined by the condition
ReU '?(x)> 0. Here we have introduced the parameter

K12 = (Ya) koI I L 151 {1_(1/%) +(aok3l ) [(do/ @)’ +2T, ]}_
We note that the transition matrix is derived under the assumptions
(koagao' [ dg) > rmx{l, To(x 12 Lyl lkoaoly,s "2, K1,z ko @oL 1 5 1/ 2})

which correspond to a linear approximation of the density in the region in which the
parabolic cylinder functions join with the geometric-optics approximation.

The electromagnetic field of the scattered wave in the limits x— 4+ « is deter-
mined exclusively by the coefficients 4. The coefficient 4; is a measure of the ampli-
tude of the scattered wave which is amplified in the plasma, while A, is the value of
this amplitude at the entrance to the plasma. The coefficient B; corresponds to the
amplitude of the acoustic wave entering the plasma slab. If we assume that there is no
source of sound, we have some definite boundary conditions which allow us to write
the following general expression for the gain:

+ 00

K=D"1! exp {2i( Y, -ll/x)_i{oo d)c[U”2 — (Akf2) +(iFs/2)+i(a'/4a)]} ,
where
D=M, M':x +M1—1‘Ml+1 exp [2i(Y; —¥y)].

Let us analyze this result for the usual conditions kjai>kiad >I !, (a;/a,),
and I, <€ayk, when we have

+00

K=D"'exp [(ik(,l/4)_f°° dx afx}/{afx) — ao)],

X2

D=exp [~ (ks +k5)] {1 +exp[i¥ — [ dxTfx)]lexp(2mk,)— 11" [exp(2mk,) - 1]'? },
X1

——— e - ———
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and the real phase is determined by
X2
¥ =kylnlkoaoLy |+ KylnlkoaoL,y [+ kof dxfa —ao +'al/(a~ ag)]
X1

—arg[[" (1 +ix )DL +iky)}+ T/, .

We see that the convective instability usually discussed, which corresponds to a gain
|K |~exp[w{k, + k)] and which occurs when 7k, , > 1, can occur only if the dissipation
is extremely strong, such that 7(k; + «,) < f32dxI(x). If, on the contrary, the absorp-
tion is slight, and the opposite inequality holds, the quantity |K |~expfy:dxl(x) is
independent of the pump intensity. This case corresponds to a saturation of the con-
vective instability. If the dissipation of the sound is negligible, {2dxI';(x)=1, the
convective instability does not occur at all.

The gain becomes infinite at D = 0; with Imw = 0, this is the threshold condition
for the absolute stimulated-Brillouin-scattering instability, while at Imw$£0 it is the
dispersion relation. Fuchs and Beaudry® have carried out a numerical study of the
threshold for this instability in the case of a linear profile. In the present study we have
the following simple and graphic expression for the threshold for the absolute stimu-
lated-Brillouin instability (Im¥ = 0):

[explm/2koL L) — 1] [exp(m/ 2ol Lol ) — 1] = eXp(zr dxT, (x)>.

If wko|L, 5 | Iy, > 1, this expression means that the absolute stimulated-Brillouin insta-
bility corresponds to a cyclic motion (cf. Ref. 6) of waves which are trapped in the
plasma, which are amplified near the resonant points, and which are damped as they
propagate away from one resonant pair to the other (or, under other conditions, away
from a resonant point to a reflection point).

Above the threshold the instability growth rate is
y=lmw=—y +vixy —x 7 'In[exp m(ky +K3)— 1]

A discrete spectrum of growing waves is excited with frequencies @, =2k,v,; adjacent
frequencies are separated by |w, , , — @, |=27w,/k¢|x, — x,|. Under the natural as-
sumption that x, — x, is on the order of 10 um, this discrete spectrum may correspond
to that observed in experiments on the effect of the beam from an Nd laser on the
corona of the stimulated-Brillouin-scattering spectrum, which is wavelength-modulat-
ed with a period ~1 A (Ref. 7).

According to our theory, the threshold energy flux density of the electromagnetic
radiation is g,,, =cn kg T (y,/w,); this expression yields values in approximate agree-
ment with the observed values. \

In summary, we have theoretically demonstrated the possibility of an absolute
stimulated-Brillouin instability in a spatially inhomogeneous plasma. The conditions
for the occurrence of this instability have been shown to be much broader than the
conditions for the occurrence of the convective stimulated-Brillouin instability, which
has been widely discussed.
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