Kelvin-Helmholtz instability and the Jovian Great Red Spot

M. V. Nezlin, E. N. Snezhkin, and A. S. Trubnikov
I V. Kurchatov Institute of Atomic Energy, Moscow

(Submitted 28 July 1982)
Pis’ma Zh. Eksp. Teor. Fiz. 36, No. 6, 190-193 (20 September 1982)

It has been shown experimentally, for the first time, that the Kelvin-Helmholtz
instability is manifested by a predominant generation of anticyclonic Rossby
solitons in a model of a homogeneous atmosphere of a rotating planet. These
solitons drift opposite the global rotation. Their properties and the conditions for
their existence are reminiscent of the vortex at the Jovian Great Red Spot.

PACS numbers: 47.20. + m, 96.30.Kf

The Keivin-Helmholtz instability of shear flows in a shallow liquid is of consider-
able interest, particularly for the physics of planetary atmospheres and plasma physics.
This instability has recently been observed in some remarkable experiments.' A dis-
tinguishing feature of the experiments which we are reporting here is that the appara-
tus may be regarded as a model of a homogeneous planetary atmosphere. The follow-
ing conditions are met simultaneously: 1) The liquid (water) is rotating as a whole
around a vertical symmetry axis at an angular velocity f2,; 2) the depth of the liquid,
H,, is approximately constant and small in comparison with the Rossby radius
rr = (g*Hy)*/f,, where g is the acceleration due to gravity, g* =g/ cosa,
Jfo=28,cos a, a is the polar angle, and f; is the Coriolis parameter, which has a
gradient over latitude (the so-called £ effect). Under these conditions the manifesta-
tions of the instability and the conditions for its appearance are extremely reminiscent
of the Great Red Spot of Jupiter.*®

The experimental apparatus is basically a paraboloid which is rotating around a
vertical axis (Fig. 1). We used a similar vessel in Ref. 9, but in the present experiments
there are two depressions in the central part of the bottom of the vessel in which two
rings, each 3 cm wide, can move, rotating around the common symmetry axis. The
gaps between the rings and the walls of the depressions are 1 mm wide. The distance
between the rings is Ay = 3 cm, and the center of the line connecting the rings lies 10
cm from the rotation axis. Each ring is rotating at the same angular velocity £2.,,
with respect to the paraboloid. In the case of an anticyclonic shear, the upper ring lags
behind the rotation of the paraboloid, while the lower ring leads it; in the case of a
cyclonic shear, the upper ring rotates more rapidly than the paraboloid, and the lower
more slowly. The period of the main rotation, T, = 27/£2,, is 0.58 s. At the corre-
sponding rotation velocity, in the absence of shear, the liquid covers the surface of the
paraboloid in a level layer of constant depth H,; this depth was varied over the range
5-10 mm.

The experiments show that if the velocity shear lies below a certain threshold,
laminar flows are established in the system with two abrupt velocity changes over a
distance ~ H,, in the gaps between the rings and the adjacent parts of the bottom of the
vessel. If this threshold is exceeded, the motion of the liquid, which changes radically
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FIG. 1. The experimental apparatus. 3—Vessel with a
parabolic bottom profile, which rotates around a ver-
tical axis; 4—liquid (water), whose surface assumes a
parabolic shape; 1,2—rings which create oppositely
directed flows with a velocity shear (the arrows,
which illustrate the flow in a top view, correspond to
an anticyclonic shear); 5—camera, which is rotating
along with the parabolic bottom of the vessel.

in nature, is determined by the sign of the shear. If the shear is cyclonic, cyclonic
vortices of small dimensions (less than ;) and extremely small amplitude arise in the
system. This amplitude does not increase even if {2, is increased to £2,,. If the shear
is anticyclonic, raising the flow velocity even slightly above the threshold gives rise to
large-amplitude vortices which have the following properties: 1) Their dimensions are
much larger than the Rossby radius r;. 2) They are stable, elongated, steady-state
anticyclones. 3) They drift opposite the global rotation of the liquid at a velocity
essentially equal to the Rossby velocity ¥, = Hy2, sin a. 4) The drift velocity of the
vortices increases with increasing H,, and £2, (the latter is due primarily to the gradient
in the depth of the liquid®). Near the threshold for the (large-scale) instability there are
four vortices; if the shear is large, there are three. These facts are illustrated in Fig. 2,
where part a refers to cyclonic shear, part b to anticyclonic shear of the same absolute
value, and part ¢ to a larger anticyclonic shear. Comparing these facts with the proper-
ties of Rossby solitons,” we conclude that the observed anticyclonic vortices are in fact
Rossby solitons, whose global shape is a consequence of the flows. There is yet another
important fact: The threshold flow velocity (the magnitude of the shear) at which this
large-scale instability appears is several times the Rossby velocity V.

The condition for the occurrence of the Kelvin-Helmholtz instability (and the
threshold for this instability) in the case of the /3 effect is determined by the Rayleigh-
Ho criterion,°
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FIG. 2. Liquid flow patterns. a—Cyclonic shear;
b,c—anticyclonic shear. These are photographs of the
paths traced out by white tracer particles which float
on the surface of the water against the background of
the black bottom. The photographs were taken with a
rotating camera at an exposure time of 0.25 s. The
white spot at the center is part of the apparatus used
to rotate the vessel. The rotation period of the parabo-
loid is T, = 0.58 s, and the period of the shear is (a, b)
Ttear = 1.7s or (c} 0.8 s. The Rossby velocity is
Ve =9 cm/s; the velocity of the outer flow is (a, b)
u =43 cm/s or (c) 91 cm/s.

where, according to Ref. 9,
1
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u is the flow velocity (u> 0 if the flow is directed along the global rotation of the
system), and y is the latitudinal coordinate (along the meridian). We then find the
stability condition to be
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(In the estimates below we assume |3°u/dy*| = |u|/&% where § is the scale dimension of
the steady-state flow gradient.) Whether criterion (2) is satisfied depends in a funda-
mental way on the sign of the flow velocity. If u > 0, an instability can occur only if
& < rg; i.e., the vortices which result from the instability must be small in comparison
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with the Rossby radius. If ¥ < 0, an instability is possible at any value of §. For a
large-scale instability (5 R 7, ) the threshold (minimum) flow velocity is |u]| R V. This
is the case of most interest, since the instability of the flow (the flow is directed oppo-
site the rotation of the system) in this case can give rise to Rossby solitons. It is not
difficult to see that both of these instability cases occur in the present experiments (Fig.
2); the case u >0 corresponds to cyclonic shear, and the case u# <0 to anticyclonic
shear. The basic effect is attributable to the outer ring, whose linear velocity is higher
than that of the inner ring (for a given £2,,.,.). In particular, large anticyclones—with
dimensions larger than the Rossby radius (Rossby solitons)}— are in fact generated in
the case of an anticyclonic shear at velocities of the (lagging) flow above the Rossby
velocity. (In analyzing the possibility that large-scale vortices—with dimensions
greater than r;— may be excited, one must take into account the fact that the anticy-
clonic Rossby vortices are stable, while the cyclonic vortices decay rapidly.®).

Interestingly, the vortices observed in the case of an anticyclonic shear (Figs. 2b
and 2c) are extremely reminiscent of the Great Red Spot of Jupiter in terms of their
shape, physical properties, drift direction, and conditions for existence. The Great Red
Spot is an anticyclonic vortex with dimensions greater than the Rossby radius. It is
drifting opposite the rotation of the planet and is surrounded by latitudinal zonal
winds. The Spot is an oval with long dimension in the drift direction, like the vortex in
Fig. 2. The Spot is apparently a Rossby soliton.>~® In view of the results of the present
experiments, the following fact appears to be of fundamental importance: The Great
Red Spot is “tied” to that band of latitudes in the Jovian atmosphere where the shear
of the zonal flows is anticyclonic, while it “ignores” the corresponding latitudinal belt
slightly to the north, where the shear—no smaller in absolute value—is cyclonic.
These facts are clearly similar to the cyclonic-anticyclonic asymmetry of the nonlinear
Kelvin-Helmholtz instability demonstrated in Fig. 2.

Regarding the threshold for the instability, we note the following. The maximum
velocity of the zonal wind in the region of the Great Red Spot is* |u|,,., = 50-60 m/s,
while the Rossby velocity is® ¥z = 160 m/s, so that the condition |u|,,, & Vx does
not hold. One way out of this difficulty is (for example) to argue that the Spot is, from
the wave standpoint, more a three-dimensional formation than a two-dimensional one,
and in this situation the wave motion along the vertical direction causes the drift
velocity of the Spot to decrease and to become much lower than the value of Vj,
introduced above.®? With regard to why there is only one Spot (more than ten vortices
of this scale could be fitted in along the circumference of the planet), the following
might be suggested: If the Spot arose from a prethreshold state of the system as a result
of some “local” process, then in a system with hysteresis this azimuthally inhomogen-
eous state might be maintained by the existing shear of the zonal flows, even if this
shear was insufficient to excite a chain of vortices (under the conditions of Fig. 2, this
chain consists of three or four vortices). There thus might be only a single Spot over
the entire zonal belt.
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