Oscillatory crystallization of a stratifying alloy
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It is shown that in a certain range of parameters, an oscillatory process leading to
the formation of a layered structure arises. The position of the kinetic transition
line from this regime to the stationary regime, which leads to the formation of a
solid phase with homogeneous composition, is indicated.

PACS numbers: 81.30.Fb

A first-order phase transition, occurring with finite rate and with finite deviations
from equilbrium, leads to the formation of a phase with nonuniform properties. A
kinetic transition from the growth of an ordered crystal to growth of a disordered
crystal with crystallization of an ordering alloy was investigated in Ref. 1. An analo-
gous transition can be expected with crystallization of a stratifying alloy, namely, a
transition from growth of a stratified crystal to growth of a crystal with uniform
composition.

The kinetics of isothermal crystallization of an alloy is limited by diffusion pro-
cesses. We shall examine the crystallization of a binary substitutional alloy from com-
ponents 4 and B. The concentration distribution in the liquid phase is described by the
diffusion equation, which we shall write in a system of coordinates moving with veloc-
ity ¥V together with the planar interface

oC 3:C aC
atL . az2L + V—a;L . € (2,0)=C (> 1)=Co. (1)

Here C is the concentration of component B (the indices L and S refer to the liquid
and solid phases); D, is the coefficient of mutual diffusion; C, is the starting composi-
tion of the liquid phase. On the interface, at z = 0, the condition for continuity of flow
must be satisfied

oC
L = =
DL a—z + VCL = VCS at z=0 (2)

and the kinetic conditions,” which have the following form for a substitutional alloy,
must also be satisfied:

V=J,+Jg VCs=Jp, V(l—CS)=JA at z =0, 3)

where J, and J; are the fluxes of components from the liquid to the solid phase on
their mutual boundary. Within the scope of the linear irreversible thermodynamics

i = Wiley — pg)- (4)

Here i, j = A, B; u;; and pug; are the chemical potentials of the components; and W
are the kinetic coefficients. We ignore diffusion in the solid phase, which is admissible
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FIG. 1.

for VL /D> 1, where L is the characteristic scale of the structure, which appears as a
results of crystallization or decomposition after crystallization.

Below the critical stratification temperature, T, the solid phase must decompose
into two isomorphic phases with different compositions. In this case, the equilibrium
diagram of the solid and liquid phases can have a eutectic point (Fig. 1).* For simpli-
city, we shall examine an alloy consisting of equivalent components such that C, at
the critical point and C;, at the eutectic point are equal to 1/2 and, in addition to the
Onsager relation W, = W, the condition W,, = Wy, is satisfied. If the eutectic
temperature 7, is close to the critical temperature T, (T, — T,<T,), then in vicinity of
T,, it is possible to use a power-law expansion for the thermodynamic potentials of the
phases

AT, C) = fof T) + a(THC — Y1,)* + b(C — )" ()

In the solid phase ag(T')~ — 7 <0, where 7 = (T, — T')/T, <1 while the liquid phase
a, >0, so that for it the fourth order terms in (4) can be ignored. From Egs. (3)-(5) we
find the relation between ¥, C,, and Cy on the boundary:

a2
V=2AW,, + WAB)[A(T/_ 5513 +3b(n? — 7)(2))2 ) (6)
1 -1 V i 2b
C,=——=—-a ag | — —————n+ — n°. 7)
L2 L (SI Waa - WAB)n a (

Here n =C5 — 1/2; and 1, = 4 —as/6b are the spinodal concentrations deter-
mined from the condition d%f5/3C% =0, A (T) = for (T') — fos(T) + a%/4b.

As is evident from (6), the rate as a function of 7 has a maximum at 7 =0 and
two symmetrical minima at 7 = + 7,. The quantity 4 (7") vanishes at 7= T, and is
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FIG. 2.
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positive for T<7T,. At the temperature T, determined by the condition
A (Tg) = a%/3b, the solidus lines AM and BN intersect the spinodal lines FM and GN
(Fig. 1), and below T the rate is positive for all Cg. The dependence C, (Cy) [Eq. (7)]
has the form shown in Fig. 2. As the crystallization temperature decreases, 4 (T') in-
creases, characterizing the supercooling of the initial phase, and V increases corre-
spondingly. At some temperature, which we shall denote by T, C, becomes a mono-
tonically increasing function of Cj. It is evident that near T Eq. (7) can be rewritten
in the form

2b
C, - Yp=— eTin+ — (8)
L
where €(T)~(T — T.)/T.<1. Using this infinitesimal quantity, we simplify the
problem (1)—(4).

If C,=~1/2, then the characteristic region of variation of Cs is determined by the
positions of the maxima and minima on the curve C, (Cy), i.e., Cs — 1/2~¢€'/2 In this
case C;, —}~€*?¢Cgs — 1. In addition, in the zeroth-order approximation with re-
spect to € the velocity ¥ may be assumed to be independent of Cg, and we can use its
value at C5 = 1/2. Using these estimates, we retain only the leading terms in (2):

3C, _ )
DLB; =V(Cs-11,)=Vn at z=0. 9)

From this equation it is easy to estimate the characteristic length / of variation in
C,(z,t), namely, [V |D, ~e<«]1. For this reason, the second term on the right side of Eq.
(1) is a factor of € smaller than the first term and we can drop it. This means that when
the concentration field is in the liquid phase, the motion of the interface can be ig-
nored. In this case, the solution of Eq. (1) with the condition (9) (Ref. 4) gives for the
concentration C, (¢}, on the interface the expression
t "Ndf'

c~1=_Vf_n(t)d . (10)

‘ O D (t 1)

For simplicity, we shall examine the case C, = 1/2. Substituting C, from Eq. (8) into
the left side of (10) and introducing the dimensionless time 8 = tV'?/e’D,, we obtain
the integral equation
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° a6 -6
Equation (11) determines the time dependence of the composition of the solid
phase at the interface. The result of a numerical solution of this equation is shown in
Fig. 3. The 6 dependence of m has the form of discontinuous oscillations with a period
6, = 0.76. Correspondingly, the dimensional period is #, = 0.76€2D, /¥ %. The jumps
in Cg occur when the maximum and minimum points are attained, while the entire
oscillatory crystallization process follows the trajectory shown by the arrows in Fig. 2.
The concentration C; oscillates with the same period, but remains continuous. Since
in the solid phase there is no diffusion, Fig. 3 gives at the same time the simultaneous
concentration profile of the layered structure that forms in the solid phase. The period
of this structure is L = Vt, = 0.76€’D, /V.

At C,=1/2, crystallization below T occurs in the steady-state regime, for
which the constant composition of the solid phase is equal to the initial value Cs = C,,.
A stability analysis shows that for dC; /dCg <0, the steady-state regime is unstable
and in our case the discontinuous oscillatory regime arises. Thus, the curve MKN (Fig.
1), on which dC,/dCs =0, is the curve of kinetic transitions from the oscillatory
crystallization regime (above this curve) to the stationary regime. _

A more detailed analysis of the different crystallization regimes in the entire Cy-7 -
plane will be given in another publication.

We thank A. A. Chernov, A. A. Migdal, and D. E. Khmel'nitskii for their inter-
est in this work and for useful discussions, and O. L. Shalynin for help in performing
the numerical calculations.
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