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An expression is obtained for the Hamiltonian describing drift motion up to terms
quadratic in the Larmor radius.

PACS numbers: 52.20.Dq

In many problems arising in high-temperature plasma physics related to particle
confinement in traps and in astrophysical applications, it is necessary to study the
motion of a charged particle in a fixed electromagnetic field. The solution of this
problem is greatly simplified for a field varying slowly in space and time, which is
important in practice, if the drifting approximation is used.'” The main small param-
eter of the drift theory (for simplicity, below we shall speak about stationary fields and
nonrelativistic motion) is the ratio r; // =e, where r, = mvc/eB is the Larmor radius
of the particle, while / is the characteristic scale of variation of the fields. The first
approximation with respect to the parameter € is usually used, i.e., the drift velocity
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v, ~€v and corrections to the longitudinal velocity of the same order are included.

In some problems the accuracy of the first approximation of the drift theory is
inadequate (for example, when calculating the coefficient of stochastic diffusion in
long magnetic traps.’) In this paper we obtain expressions for second-order drift in
curvilinear coordinates £ ',£ %,£ 3, which are naturally related to the magnetic field by
the expression

B=[ V! XVE?]. (1)
The corresponding equations of motion have a Hamiltonian form.

Although it has been known for sometime that the drift motion permits a Hamil-
tonian formulation,*’ this fact was usually ignored in the traditional approach. As a
result, for example, the conservation of the longitudinal adiabatic invariant, which in
the Hamiltonian approach follows from the general theorems of mechanics, required
special proof.'> The simplicity of the Hamiltonian description is also made evident in
comparing our result (especially in the case of a potential magnetic field) with the
results in Ref. 6, wherein an expression is presented for second-order drift in vector
notation. We note another recent paper,’ in which a drift Hamiltonian was also con-
structed, but up to terms ~e.

We shall choose the curvilinear coordinates £ as the generalized coordinates and
write the Hamiltonian of a particle in a magnetic field:

H(E, p)= ELgik (83878 [p,— ;A,.(zl, £ £)llp,— —:—Ak(s‘, 22, @
m

where g* represents the contravariant components of the metric tensor, p, are the
generalized momenta, and 4, are the covariant components of the vector potential, for
which we choose the set 4; = (0, £, 0). We shall make a canonical transformation
from the variables p,, £ to the new variables J,, @; P, Q; p;, s with the help of the
generating function F(£', @; £2, Q; &7, p)):

F=t ~(Bctg v —g' g0 S8 4 L2 _)4p EB(2-0)4p £,
2¢g e g33ll ¢ Il'g I

33

where B (£, £2, £7) is the modulus of the magnetic field. In a homogeneous magnetic
field B = const, the metric coefficients are constants, and for the new variables the

following expressions are valid:
2

v,-a
p em? gp=arccos——:£—\/——ﬁ ;
= 2 v 5 y
1”5 L 1VE
, ¢
P=ps, Q=8 —pi (3)
n c g e 823
P =ps o=+ = 8B p = 2R —E - —p)»
e £33 e £33 ¢ 33

where a*> =V¢ 2, and v, is the velocity component perpendicular to the magnetic field.
As is evident, J, differs by only the factor cm/e from the magnetic moment of the
particle g is the Larmor phase measured from the direction a°, while p, is the compo-
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nent of the particle momentum along the magnetic field. The remaining three variables
determine the position of the particle up to #,:

€= —PrO(r ), §=0+0(,), B=5+0(1,). @

In an inhomogeneous magnetic field, when calculating the partial derivatives of
with respect to £/, it is necessary to differentiate the components of the metric tensor.
As a result, additional small terms ~ e will appear in relations (3). Expressing the old
variables in terms of the new ones and substituting them into (2), we obtain a Hamil-
tonian in the new variables, which must then be averaged with respect to ¢.* Omitting
the intermediate calculations, we write out the drift Hamiltonian in the form
H=H,+ H,, where H,~¢eH,

=By 2
o= J T
mce 2m (5)
2 12
- B 9 8y 813), (. 20 [ 813 _g__a__g)
H, mJip"[ agl( 3) asZ( ) @23) ass Bgas 253 aé3 g22
c 0823
. .
e Pflgls o8

(For simplicity, it is assumed here that g;;=1, which corresponds to identifying &
with the arc length along the force line.) The £’ dependent metric coefficients and the
function B must be expressed in terms of the new variables according to Eqgs. (4) [after
dropping the terms ~O(r.) in them)].

It is remarkable that the term H,, already describes first-order drift (centrifugal
and gradient). Equations for P, Q, Py, valid up to terms ~O(€’) (J, in this approxima-
tion is an integral of the motion), follow from the Hamiltonian H, + H,. The expres-
sion for § = dH /dpy, has lower accuracy O (€%), which, of course, is not very impor-
tant, since in many applications it is often sufficient to use only the zeroth-order
approximation for §: § = dH,/dp, = p,/m. We note the considerable simplification of
the Hamiltonian H, in a potential field, where it is possible to choose a system of
coordinates such that g,, = g,; = 0 (identifying £* with the magnetic potential).

In conclusion, we shall present one more expression for the contribution to the
Hamiltonian related to the electric potential @(£ ', £2, £7). In this case, the term eg [(c/
e)P, Q, s] is added to H, and the term

oy dp
cpy| 821 g23 352 —5 813 —'asj'gxsgza

is added to H,.

VIf the system of coordinates is chosen so that g,, = g,; = 0, then it can be shown that the set (cP /e, O, s)
gives the coordinates of the center of the Larmor circle, although in general this is not the case.
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