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A modified definition is offered for the scattering length in a system of three
charged particles. A correct method for calculating it is described. This method is
used to calculate the scattering length for the scattering of the proton by the
deuteron.
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1. The scattering length is a fundamental characteristic of nuclear collisions.
From the results determined on scattering lengths one can draw conclusions about
various parameters of nucleon-nucleon interactions, e.g., the validity of the hypoth-
esized isotopic invariance of nuclear forces.

There is considerable interest in calculating the scattering lengths in few-nucleon
systems by methods that can guarantee results of a specified accuracy. To date, how-
ever, such calculations have been carried out only for systems of neutral particles. In
particular, the n-d scattering lengths have been calculated for realistic nuclear poten-
tials (see Refs. 2-4, for example).

The scattering lengths in systems of charged particles have not previously been
calculated correctly, because no numerical method has been available for solving the
scattering problem of three Coulomb particles on the basis of the initial dynamic
formulation of the problem. Recently, however, substantial progress has been made
toward the solution of this problem. A correct calculation method for dealing with the
scattering of three charged particles was developed in Ref. 5, and a definition of the
scattering length in such systems was given in Ref. 6. As a result, it has become
possible to proceed to calculations of the scattering lengths for three-particle systems
with a long-range Coulomb interaction.

In the present letter we describe a method for calculating the scattering lengths in
a system of three charged particles on the basis of a differential formulation of the
scattering problem.” We will use this method to calculate p-d scattering lengths.

2. We consider a system of three charged particles that interact through potentials
V.(x,) {a = 1,2,3), which contain short-range nuclear parts along with a purely Cou-
lomb part. We assume that the corresponding two-particle binary Hamiltonians
h,=—A44V¥, have bound states ¢,,(x,) with energies —Eq;
(i=12,.,N;N,< )

The elastic amplitude £, ,(p.,, p, ) in such a system for an energy E = p’, —¢,, can
be written®

o i (PP )=Fo@l P )+ X[PL), (PP (1)
where the functions f;, and y, contain all the singularities in the elastic amplitude for
the threshold energy E = —¢,;. These singularities are consequences of the long-
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range part of the binary potentials. We wish to emphasize that the singularity of the
function f; is not a purely Coulombic singularity; it instead contains some additional
singularities which correspond to the multipole part of the interaction of the incident
particle with the effective target potential V,,. This potential is asymptotically equal
to the sum of the Coulomb and multipole parts:

A
n, e 14 a_)

Iy,

Vailvd)™ o
I=11y|

where n, is the total charge of the target, and g, are the multipole moments of pair «,
averaged over the wave function ¢, ,. The singularities of the function f; are given
explicitly in Ref. 6.

The second term in (1) corresponds to the nuclear part of the interaction. Its
singularity at p,” = 0 is described by the factor y,:

X, (p2)=1p,1" Yexp {2in,(nln | — 1)+ 2mn,e(m,)},

’

where 7, =n,/2lp,|, and ¢ is the Heaviside unit step function [e(n) =0 at n <0,
&{n) = 1 at n > 0]. The function f, , has a finite limit at the threshold energy, which can
naturally be called the “modified scattering length” a_; in the given system:

0ui(BrP) = lim [ (0 ,)
p,—0
For spherically symmetric target states ¥, ;, we might note, the multipole part of
the potential ¥, ; vanishes, and the singularity of f, is purely Coulombic. As a result,
the definition of the scattering length offered above agrees with this ordinary definition
for charged particles in this case.®

The problem of determining the scattering length thus reduces in practice to one
of determining the singular terms of the three-particle elastic amplitude; after these
singular terms are subtracted, the remainder is in the factorized form y, F, where fis a
smooth, bounded function. The latter function corresponds to the nuclear part of the
interaction.

To illustrate the method for calculating the scattering length by the approach
described above, we consider the scattering of a proton by a deuteron. We specify the
nuclear interaction by means of MT I-III potentials, from Ref. 9.

To solve the p-d scattering problem we use a very simple version of the modified
Faddeev differential equations, in which the entire Coulomb interaction is incorporat-
ed in the unperturbed Hamiltonian. After the components of the wave function are
expanded in spherical harmonics,'® we find a system of integrodifferential equations
for the partial components.”> The numerical method used to solve these equations® is
based on a finite-difference approximation and is a generalization of the method devel-
oped in Ref. 10.

This method can be used to calculate the amplitude for elastic scattering at sever-
al energies near the threshold. Then subtacting from the elastic amplitude the function
/o, and multiplying the remainder by y, ', we find the energy dependence of the
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function f, ; near the threshold. The scattering length is then found by extrapolating
this dependence to the point £ = — ¢

As a result, the doublet {total spin § = 1/2) and quadruplet (S = 3/2) p-d scatter-

ing lengths >5 " 'g are written as the partial series
28+ i Ay &, 1z S
“la(p,p)=— T a; P/ft), (2)
4, L=0

where ¢ = (p’, p) and the normalization factor a. is the Coulomb radius of the p-d
system. The summation in (2) is over all values of the total orbital angular momentum.
The coefficients a7 are the scattering lengths with a fixed total orbital angular momen-
tum. The calculations show that series (2) converges extremely rapidly, and all terms
with L>1 can be ignored in calculations of the scattering lengths. Consequently, >+ 'a
is very nearly equal to the scattering length in the S wave.

For the scattering lengths we find the following results:

2¢ =1,03fm , ‘2 =11.96fm.

For comparison, the experimental values of these lengths are''"'?

1% =13~ 02fm, ‘a =114% 1% fm,

12: 25 2273-0,1fm, *a =11,88°%% fm .

I am deeply indebted to S. P. Merkur’ev for assistance and support and to L. D.
Faddeeva for a discussion of her results.
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