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The intrinsic modes for drift-collisional tearing (discontinuity) instability are
studied in this work. It is shown that allowance for small corrections for the
interaction of tearing perturbations with ion-acoustic waves leads to the
disappearance of the proper solutions.

PACS numbers: 52.35.Py, 52.35.Dm

It was shown'"? that the convective outflow of energy from the region of electron
dissipation for tearing perturbations leads to a stabilization of the drift tearing modes
(a similar effect is now known for drift waves™"). It can be shown that the stabiliza-
tion criteria obtained for the collisionless’’ and semicollisional™® cases agree in accura-
cy and generally account for the interaction energy with ion-acoustic waves in the
overall energy balance. The stabilization criterion for the collision mode of a drift
tearing instability, obtained in Ref. 2 from the same considerations, is incorrect. As we
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shall show below, the intrinsic modes for this branch of oscillators are totally different
from those found in Refs. 6 and 7 and used in Ref. 2 and, therefore, they vanish for
small corrections for interaction with the acoustic ions.

We shall take into account the effect of collisions in a simple model of the Bhatna-
gar-Gross-Crook collisional term. The system of equations for the perturbations of the
scalar ¢ and vector A potentials has the form
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Here w. = w$ is the electron drift frequency, v,; is the electron-ion collision frequency,
o~ —o. T./T, v, >o>v, =v, m/M, and o ~o.>Imw. The singular surface k)
= 0 coincides with the plane x = 0, and the expansion for the ion contribution in Eq.
(1) is valid to distances |x| <8, = w./k vy, and k| = 3k (x)/3x = k /L,, where L, is
the characteristic shear length.

The basic exchange of perturbation energy with the electrons occurs inside a

resistive region |x| <8, = \/2a)* v /k {vr., and the total free energy of the instability
stored in the global magnetic field configuration is proportional to the known param-
eter 4 ' in the tearing mode theory, which formally corresponds to the discontinuity in
the logarithmic derivative of the external solution on the boundary of the inner region.
Moreover, the dispersion equation can be obtained by integrating the equation for 4,
over the entire inner region [assuming that A4 (x)~const] and by connecting the loga-
rithmic derivative for the interior and exterior solutions (see, e.g., Refs. 8 and 9)
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the 4, term, which was taken into account earlier,'®” arises in the integration of the
electron contribution in Eq. (2) with the potential ¢ ‘©’, which is determined by the
electron term in Eq. (1). The ion contribution in Egs. (1) and (2), i.e., the interaction
between the' tearing mode and ion-acoustic oscillations, is taken into account as a
perturbation. This leads to the appearance of a correction ¢ ‘!’ to the potential ¢ ‘© and
to two corresponding ion terms in Eq. (3)
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The y, and y, potentials satisfy the following equations:
y, =y x84 = x57*, )
¥y —y Bt = a1l vy x). 8)

The parameter § determines the characteristic length of variation of the longitudinal

electric field® and, in the case of the collisional mode, it is small in comparison with
S,.

The solution of Eq. (7) can be written as a sum of the special and general
solutions
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where I ,,,( )is a Bessel function of imaginary argument. Since the desired solution
¢‘? should be odd, C,=0, and C, can be determined from the condition for the
finiteness of the solution as |x| — «. If Reb?>0, C,=0; and if Re62 <0,
C, = Vorr (3)8 ', where I' (3) is the gamma function. Thus, if § = |§ |¢’, then the
solution changes abruptly on the lines @ = 4 7/4 (Stokes lines).

We shall first examine the problem that was solved in Refs. 6 and 7, i.e., we omit
the ion contributions in Egs. (1) and (2), we retain only the first term in Eq. (3). By
extending the solution analytically from the real axis to the straight line f exp(ia),
(Red > 0) or to the straight line ¢ expi(a — 7/2), (ReS > < 0), where te( — o0, + «)isa
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real number, we can see that the integral 7 = 25§ dx(1 + yyx) has the form
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where I, =27 (3/4)/I" (1/4).
Assuming that the solution § lies in the first sector, we obtain the dispersion equation
which fully agrees with the equations in Refs. 6 and 7
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Solving Eq. (11), we obtain a contradiction with the initial assumptions not noted in

Refs. 6 and 7: 6~*V —1 , 1.e., all three roots lie outside of the sector I. Assuming
similarly that the solution lies in the sectors II, 111, and IV; respectively, and selecting
the required phase according to Eq. (10), we arrive each time at a contradiction with
the initial assumptions. Thus, there are no solutions lying outside the Stokes lines
a= +7u/4

Let us now assume that the solution § has a phase exactly equal to 7/4. Thus, the
solution on the Stokes line must be constructed as the half-sum of the solutions from

above and from below, i.e., C; = \/17'/ 2 (3)8 ~' (only this constant, as we shall see
below, guarantees the existence of intrinsic modes). Moreover, this solution coincides
with the solution selected from the condition for the convective flow of energy in Ref.
1. Thus, instead of Eq. (11) we have
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It can be easily seen that Eq. (12) has a root 8~V i—1 with the phase 7/4, which

corresponds to the increasing solution Redw, =0, Iméw, > 0. The increment in fact
coincides with that in Refs. 6 and 7, although the solution has a completely different
nature.
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We shall now solve the final problem: whether such unusual solution is stable
relative to the corrections 4 ¥ | If allowance for A, changes the phase and the solu-
tion leaves the Stokes line, then the intrinsic oscillation modes, as we have seen above,
are absent and there is no instability. The perturbed solution p, on the Stokes line is
constructed similarly to Eq. (12), as the half sum of the solutions from above and from
below. This makes it possible to determine the phase 4 (. As for the 4 (", we can show
[after calculating the integral (5)] that, in the case of solution (9), it turns out to be
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identically equal to zero
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where I, = (7% t7,(t)dt~ —3 is the integral along the real axis from the y,(¢)

0

function that satisfies the equation
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1t is easy to sec that the phase of Eq. (13) on the Stokes line § ~e™* is equal to 7/2,
i.e., allowance for the ion correction shifts the solution from the Stokes line (allowance
for the corrections due to the finiteness of § /5, gives a similar result). Thus, although
the solution exists formally, it vanishes when small corrections are taken into account.
There are no intrinsic modes for the collisional tearing instability for drift frequencies
which are comparable to the well-known Furth er al.”® increment: w. >v/*(k jvy,
/ p )7 (P4 '/0%,)”.  The stabilization criterion” for the examined mode can be
determined from our Egs. (3)—€6), if it is assumed regardless of the phase relations,
that the ion correction 4 ? attains a finite value of the order of 4 '. However, as we
showed above, the solution is such that the already small interaction with the ions
leads to the disappearance of the intrinsic solutions for the drift collisional oscillation
mode.

""However, for very strong collisions this criterion is replaced by a weaker constraint w. > v,, (m/M), since
for v,; > w. (m/M) the drift effects no longer play a role.
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