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A correction for the free-path time in a random-impurity field and the
corresponding correction for the conductivity are calculated for a two-
dimensional, degenerate electron gas with a Coulomb interaction.

PACS numbers: 72.10.Fk, 73.25. 41

In recent studies of the problem of localization of two-dimensional electrons,
several mechanisms have been considered,’’?’ which decreased the conductivity o(T")
as a result of decreasing the temperature. In Ref. 1 the negative corrections for o took
into account the interference due to scattering of noninteracting electrons by the dif-
ferent impurities. In Ref, 2, as applied to a three-dimensional case, such a correction
was due to interference of the impurity and electron-electron interaction. Extrapola-
tion of the Ref. 2 method to the two-dimensional case with a short-lived, interparticle
potential gives a correction §a/0,~ (€7,) ~ ' InT'r,, where €. is the Fermi energy, 7, is
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the transit time disregarding the electron-electron interaction. The same result, within
the accuracy of the numerical factor, follows from Ref. 1. The logarithmic dependence
of o on T was observed recently in thin (~3 nm) films of AuPd.”™

In this article we show that under the conditions where the interparticle potential
is considered a two-dimensional Coulomb potential, the interference of the impurity
and interparticle scattering decreases the conductivity more rapidly
So/ay~ — (€x70) "' In®Tr,. Such behavior is expected in the semi-metal films. For
example, in the case of Bi, where the Debye radius (three-dimensional) is ;' = 100
A, a film of several nanometer thickness satisfies the postulated conditions.

The first correction, with respect to the small parameter (€-7,) ", to the self
energy X of the electron is shown in Fig. 1. The standard “cross” technique for the
impurity averaging is used; the wavy line represents the interparticle Coulomb poten-
tial. The special term X’ is obtained from the integration region wr, <1, g/ < 1. Since
all the internal frequencies and energies are greater than the temperature, we can go
over to the limit 7 — O in the expression for 2°. Thus, we obtain the following expres-
sion for the diagram in Fig. la:
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where € is the electron energy measured from the chemical potential, / = v.7,, and
k =2e’m/e_ . The first factor in Eq. (1) is due to interference of the impurity and
interparticle interactions and the second one is a screened, two-dimensional Coulomb
potential, where the following expression is substantial for the polarization loop™'

- (m/m) (gl 2/1(g) 2 = 2iwr ) 1 @

The last factor is due to G (p — q), where, as we shall see from the end result, the
dependence on w and g can be disregarded in the logarithmic approximation. The w is
bounded below due to the requirement that the pole of the Green’s energy function of
the particle should go over to the other side of the real axis after emitting the interac-
tion quantum. Otherwise, the impurity corrections for the Coulomb potential are
small.
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Integrating with respect to the frequency w, we obtain
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It can be seen that integration region with respect to y = ¢/, which account for the
major contribution to the integral, is €7,/k{ <y < 1. Calculation of this integral and a
similar expression corresponding to Fig. 1b gives the formula:

GER(p)"1 =€~ rfp +i/27 - i(]ﬁneprg‘) (e - §p+ i,«'Zro),"(e - fp—i,"Qro)]
x lnzero @

Since o is proportional to the imaginary part of the current correlator, for which a
unitarity condition exists,'® the following formula holds for isotropic scattering by
impurities (Fig. 2).

o~ fd2pde (- anp/de) A%e, p)I T (e, p)I°, ®)

where A4 (e, p) is a step of function G.(p) on the cut Ime = 0 and T is the vector vertex.
The main contribution to the integral (5) comes from the region € — §, ~ 74" Y e~T.
In zeroth approximation I';~p, we obtain

oy /o, =1 -(4mepr )t In2Tr . (6)

The vector vertex in the first approximation is given by the expression in Fig. 3.
Here both internal electron Green’s functions in the correction for Iy are simulta-
neously either leading or lagging; hence, the impurity inclusions are small. In addition,
the momentum integral in I, is collected from a narrow region €' — &, ~75 ', and
the frequency integral is corrected from a wide region €, < €' <0; therefore, there are
no corrections that are logarithmically dependent on 7. Thus, allowance for I'; re-

duces to an ordinary renormalization of electron velocities at the Fermi surface.
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To use Eq. (6), we must satisfy the condition In(77;) ™' > 1, in addition to the
aforementioned conditions. We note that «/ = (¢*/€_, v;)ex7, can be used for Bi of the
order of 0.1e.7,2 1 for slightly contaminated samples.
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