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It is shown that the temperature dependence of the perpendicular conductivity has
a maximum near the Peierls transition. If the filaments have gaps, then a
corresponding maximum may also appear in the parallel conductivity.

PACS numbers: 72.15.Nj, 71.30. + h, 72.60. + g

An increase of conductivity above the Peierls transition in TTF-TCNQ salts is
one of the well-known effects in the physics of quasi-one-dimensional compounds.'"
There is a school of thought that this increase is associated with the collective excita-
tions. Below we examine a model in which the collective excitations lead to such
increase. Investigation of the intrinsic transverse conductivity in real quasi-one-dimen-
sional systems may prove to be very important because the conducting filaments may
be broken in some places. Thus, the effective longitudinal conductivity is possible only
if the electrons can flow from one filament to another.

We shall examine a system of conducting filaments with such breaks. Let us
assume that the average distance between the breaks is equal to /. Let us also assume
that this distance is much larger than all the microscopic dimensions of the system
and, in particular, much larger than the amplitude of the jumps 7; of the electrons
from one filament to another. Thus, the circumfluence of the gaps in the filaments can
be described by the classical equations. Assuming that the conductivity at the gap is
low and that the intrinsic parallel conductivity in the region between the gaps o) is
much larger than the transverse conductivity o, we obtain after a basic examination
the following expression for the effective parallel conductivity

2
O ~1 /d2 a-L R (1)

where d is the distance between the filaments.

Equation (1) shows that the longitudinal conductivity 0., measured experimen-
tally may depend greatly on the intrinsic transverse conductivity. An analogous equa-
tion for the impurities with a Gaussian distribution was obtained in Ref. 2.

We shall calculate o, in the following model. Let us assume that the attraction of
electrons on one filament is stronger than the interaction of the different filaments.
Thus, a gap begins to form at a certain temperature 7,,. Let us assume that the
adiabatic condition is not fulfilled, so that the system has a tendency of undergoing
both a Peierls transition and a superconducting transition. The low-lying excitations in
the system are described by the phase Hamiltonian.?* Taking into account the inter-
action of the different chains, we can write this Hamiltonian in the form
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In expression (2) g; and ¢;,. are the density and the phase operators of the ith
filament, respectively. The commutator of these variables is

[,3,‘ (x)o $](x’)]= «5i]-8(x - x’) .\

The quantity K represents compressibility and v denotes the speed of sound. The
third and the fourth terms describe the interaction of the superconducting and dielec-
tric fluctuations of the different filaments, respectively. The summation is taken over
the nearest neighbors. A three-dimensional transition both to the dielectric and to the
superconducting state can occur, depending on the relation between the constants J,
and J,. Examining the interaction between the chains in the approximation of the self-
consistent field, we obtain the equations for the temperatures of the super-conducting
T., and the dielectric T, transitions™":

2] VT =
1--2—If [ G, (x,7) drdx,
(-] - 00
oo ©)]
of, T,
I= 22 I _{o O (x, r) drdx,
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where z is the number of nearest neighbors

G, (x,7) =< expRi¢p(x,7)~-2i¢(0, 0)) >, ,

x 0 (3a)
Ho(x,-r}=-cxp[iﬂ( [ plxlr)dx’ - f p(x,'ﬂ)dx')-',

xo -

Equation (3a) is averaged over the states of the free Hamiltonian without allowance
for the interaction of the chains. In explicit form the correlator G,(x,7) is>¥

G (x, 1) = (T/T, )*sinh m(*/, + ir)sinhr'(*/, —:ir)] ~ers @

where a = 2(rKv) !

The difference between the I7 (x,7) correlator and the G (x,7) correlator is that

~! is substituted for a in the former.

a
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Henceforth, we shall assume that 7,, > T,,, so that at 7,, a three-dimensional
dielectric transition occurs. The applied external field, which is perpendicular to the
filaments, can be calculated by substituting ¢, — ¢,—¢, — ¢, — e4d. The collective
part of the current can be written in the form

j=23.’1<sin(2¢i -2¢i+1—2eAd)>v (5)

The current in Ref. 5 is an averaged Josephson current. In addition to this cur-
rent, there is also a single-particle current at finite temperatures. We shall not examine
this current, since the three-dimensional transition has little influence on it. Assuming
that the external field 4 is weak, we obtain in the usual way the expression for the
response function Q (w):

1/T oo
Qo,) = 4e?J? f [ G¥x, r)(e - V)dxdr. ©

After the calculatlons in Eq. (6) an analytic continuation from the Matsubari
frequencies iw,—o + id must follow. The G (x,7) function differs from the Gy(x,7)
function in that the averaging is done over the total Hamiltonian (2). However, in the
region of high temperatures 7> T ,, the interaction of the chains in Eq. (2) is unimpor-
tant. In this case the G function coincides with Gy. The calculation in Eq. (6) with use
of Eq. (4) and the subsequent analytic continuation can be easily performed by de-
forming the contour (0, 1/7") into a sum of the contours (fo0, 1/T+ i) (0,/0) and
({0 +1/7T, 1/T). After the calculations we obtain

Qw) = o J;Zé__) sin~laal 2(a)[smz 4T" ! (— Lm
a 1’14(_5)] , )

At low frequencies Q (w) depends linearly on the frequency. The perpendicular
conductivity ¢, (0) is

CO

- sin
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Equation (8) shows that the conductivity o, is a power function of the tempera-
ture in the high-temperature region. The index a depends on the interaction at one
filament. For a weak interaction this index is close to unity.

At temperature T<T,, the last term in the Hamiltonian (2) becomes important.
In this region Egs. (8) and (9) cannot be used. At J,<J, the third term in Eq. (2), as
previously, can be ignored. At 7=0 the G function in Eq. (6) depends only on

7> = (x/v)* + 7°. Going over to the polar coordinates » and # and integrating over the
angle 6, we obtain

110 JETP Lett., Vol. 31, No. 2, 20 January 1980 K. B. Efetov 110
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If G (¥) decreases sufficiently fast, then Q (@) is analytic for small |w|. The expan-
sion of this function begins with o”.

Expanding the second cosine in Eq. (2) and using the self-consistent field approxi-
mation analogous to that in Ref. 5, we obtain the asymptotic form of the G (#) function
at large distances r>«

G(r )me(x /T, )2 expl—kr ), (10)

where k = CT_, and C is a number of the order of unity.

Substituting Eq. (10) in Eq. {(9), we can see that the expansion over small & begins
with @? and the conductivity is equal to zero. Apparently, this result is also valid at
J,~J,.

It was assumed above that the resistance at the gaps is large. In practice, however,
the flow across the gaps may be large. Thus, the tunneling across the gap resembles
qualitatively the examined tunneling from one filament to another. The corresponding
equations can also be obtained by averaging with the Hamiltonian (2). Taking into
account the contribution from the current across the gaps, will lead to a more complex
expression than Eq. (1) for the effective conductivity. In this case the ratio o /0, is
no longer a constant. The defects and the commensurability give rise to the appearance
in Eq. (2) of cosines that contain the density integrals. The influence of such terms on
the conductivity is analogous to the influence of the last term in Eq. (2), which de-
creases it. This is in qualitative agreement with the results of Refs. 6 and 7. The
increase of conductivity observed experimentally is described approximately by the
a~T =" law,”™ which corresponds to the case a~1. The numerical estimates obtained
with the help of Egs. (3) and (8) for J,~J,, T~T,,, and a=1 give the value o, ~1
22 ~'.cm 2 This value agrees in order of magnitude with the measurements of Mar-
shall e al.'®

In conclusion, the author thanks S. A. Brazovski, L. N. Bulaevskii, A. I. Larkin,
and A. Luther for a discussion of the results.
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