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1t is shown that the power solitons are absolutely unstable in certain one-
dimensional, nonlinear systems.

PACS numbers: 02.30.Jr, 03.65.Ge

Lately, much attention has been devoted to solitons in studying nonlinear sys-
tems. It was shown recently'~ that a number of one-dimensional, nonlinear equations
have soliton solutions that have a power-law asymptotic form. They are derived from
the ordinary exponential solitons by specially selecting their parameters. We want to
draw attention to the importance of the stability of power solitons. We show below the
absolute instability of such solutions in some specific cases.

1. Let us examine a nonlinear Schrédinger equation
iy +y¢ -y + g2y =0, m

to which many nonlinear equations reduce in first approximation when they are solved
asymptotically.* Seeking solutions of the form ¥ = u(x)exp(iwt ), we obtain the follow-
ing equation for u(x):

6 o1+ u+ flu)u=0. @)

In studying the soliton solutions, we generally limit ourselves to the first term in
the f(2) expansion: f(z) = az. Thus, at a>0 Eq. (2) has a single solution for all
®> —1. When the oscillation amplitudes are small and the coeflicient of the second
term of the f(z) expansion is anomalously large, two terms must be left in it. The
soliton in this case can exist even when a <0. If the second term is positive, then

(L eo)u-lalu®+ B2S =0 ®
For arbitrary @ > —1 the soliton solution has the form
5 -Y
b \/1+;1(B_‘) chex =1s ) e=2Vitw, @
Vial e

When e—0 (wo— —1) the solution (4) goes over to a power soliton

= 2 ’[x2+ 2BV -V’. ®
lal |3

a
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It is easy to demonstrate that the solutions (4) and (5) are unstable in the sense
that the small corrections to them increase exponentially. It was shown® that the
instability of solitons in the nonlinear Schrédinger equation is due to the sign of the
derivative dI /dw, where I = = _ u*dx. The solitons are stable when dI /dw >0 and
are unstable when dI /dw < 0. In our case,

2Y=-"% &
I(m)*\/l:?/B—g- + arcsin G+( E)) ) ©

a

and we can easily verify that dI /de < 0. Thus, the solitons (4) and (5) are unstable.
They apparently decay into periodic waves ¥ = " ~** for which the Lighthill
stability criterion is fulfilled:

aw 920

— > 0.
dut/ ok*)u,~o

2. Another approach to the problem under consideration is possible. As is known,
in quantizing the nonlinear systems we arrive at a problem of one-dimensional gas of
interacting bosons.®’ The ordinary solitons correspond to a bound, multiboson state in
a system with a pair attraction between the particles. The three-particle repulsion and
pair attraction were examined in Ref. 8. We shall discuss the opposite case of pair
repulsion and three-particle attraction. Such a system can be described by the
Hamiltonian

g2 N 97 ;
H=-w— 33X — 4+2Va X B(xi ~x,)-:3Wa? X oMx, —x )8(x, ~x_ ),
; 2 I 7 L. 1N i s
2m L=-16xi i < . i<j<s
Y
where m is the mass of the particle, ¥'>0, W >0, q is the interaction radius, and  is

the number of particles. In the self-consistent field approximation in which all the
single-particle wave functions are the same, the Hartree equation has the form

3
— — +ve-2NVgP 4 7N2qut‘> =0, ®

where ¢ (x) is a normalized, single-particle, Hartree wave function (§¢ ?dx = q) and v is
the single-particle Hartree energy which is related to the total energy by the relation

N2y N3W
E = Ny~ [dx-¢pd + — [dxpC. 9)
a . a
It can be seen that after we substitute w = —1 —2mv/#, |a| = 4mNV /#, and

B?=3mN?*W /# Eq. (8) coincides with Eq. (3) and has localized solutions such as
Eqgs. (4) and (5). Investigation of their stability reduces to a comparison of the energy
per particle in such a bound state with the energy of a free boson. Substituting solu-
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tions (4) and (5) in expression (9) and using the normalization condition, we obtain

E/N:(V'L’/zuﬁlrt +tan(/;n7—;—lv) / ( m’W—‘fg) , (10)

where [because of Eq. (6)] N can vary only in a limited range N*/2 <N <N ¥,
N * = mfi/a(mW)'?. The power soliton corresponds to N = N * and to the minimum
energy per particle (E /N),... = V'>/2W. Since it is positive and enters the continuous
spectrum of single-particle excitations, the quantum, exponential, and power solitons
examined here are absolutely unstable.

3. In conclusion, we shall investigate the frequently examined® nonlinear wave
equation for the complex amplitude by immediately selecting a nonlinear potential in
it in the form that was discussed in Sec. 1

VR TIONE TRTE T QR 20 3 (1D

Limiting ourselves to monochromatic solutions ¥ = v(x)e"”, we obtain Eq. (3) and
solutions (4) and (5) for v(x) after substituting w— — £2 2. Equation (11) describes the
dynamics of the Lagrangian system, and we can easily determine the energy and the
adiabatic invariant by using the corresponding Lagrangian (9). For our solutions they
have the form

K ) ) a 62
E=yf dx[v')2+'(1+92)02+ —<21v4 ‘:3”6 ) (12)
o0 T . . ]
. aL s aL .
J= — [ de [ dt{¥W—+ ¥ — =2{Q| [ dxv? 5 13
2”,_-'°° ° 6‘1’ 6‘1’* -—00

where L is the density of the Lagrangian function.® In contrast to the classical and
quantum analysis of solitons in the preceding sections, here we use the quasi-classical
approach. As is known, in the quasi-classical approximation the quantization condi-
tions reduce to the requirement J = #N, where N is the number of quasi particles.
Treating a soliton as a bound state of a large number of quasi particles, we calculate
the energy in it per particle. Using Eq. (6), we find from Egs. (12) and (13)

210| V3 {7 ' T N
Ne—— J— +aresin|[l/ \/1.+ — (B/a?)(1 =Q2) |}/ (14)
P g )2 3
E/N= ' (14024 3q%/ 1689 + 22 S 15
= — (1+Q%+ 3a + —_
2{Q] 48 N | (4
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N varies from 0 to N, = 2(3)"*#/#B which corresponds to a power soliton with a
minimum energy per particle

3 (fa)?
E/N) ﬁ{l + 2 ( < ) ] .
Since (E /N )i, is larger than the energy of the free particle E, = #, the bound state is
unstable with respect to the decay to free particles. (Notice that dN /d |2 | > 0 follows
from Eq. (14)—as shown in Ref. 9, the solution in this case is unstable with respect to

modulation.)

The results obtained by us for specific dynamic systems indicate that investigation
of the stability of solitons in systems allowing power solitons is of crucial importance.

In conclusion, we express our gratitude to A. M. Kosevich for his attention and
interest in this work.
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