Atom motion in a superstrong magnetic field
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A mass anisotropy effect arises when an atom moves in a superstrong magnetic
field B> 10'2 G. It is shown that a particle with an anisotropic mass performs a
complicated motion in an inhomogeneous field: in a forward-current field slowing
of the radial velocity leads to elastic scattering, and in a dipole field the sign of the
derivative of the centrifugal potential changes, which leads to falling of the particle
on the dipole.

PACS numbers: 41.70. +t, 32.90. + a

After the discovery of colossal magnetic fields in pulsars (~ 10'> Oe), the behav-
ior of matter in superstrong fields acquired urgency.’> An atom, placed in such a field,
is stretched out along the field, while simultaneously being squeezed on all sides.
Consequently, the binding energy increases, which leads to the appearance of an at-
traction into the region of higher field. Besides this, however, as is known, an atom in a
sufficiently strong magnetic field becomes more massive in the cross-field direction. It
is easy to understand this effect by considering that when an atom moves with a
velocity v, at right angles to the field, its electron shells are distorted in the same
manner as if an electric field v, B /¢ were acting. The energy of the polarized atom, on
the other hand, is equal to E = d */2a, where d = aE is the dipole moment and « is the
polarization coefficient. Thus, an additional energy E = }(@B*/c?) v} appears. The
total energy is

1 B2
E=—mv?+ —1—1—02 - U(B). 1
2 ° 2 oz 7

Here m, is the atomic mass and U (B) is the binding energy.

At large B the last term U (B) is only very slightly dependent on B (as In? B) and,
for simplicity, it can be ignored. Let us convert to units in which my= 1 and B is

measured in units of c\/m(,/\/-;— ; thus, the Lagrangian (1) can be simplified:

1 1
Z: —2—U"2+—2—‘(1+Bz)v-|_2, (2)
where v, v, are the velocity components along and at right angles to the field, respec-
tively. Let us now consider two specific problems.

a) An atom in the field of a forward current.

In this case B has only azimuthal component (we are using a cylindrical system),
and the units of length can be chosen such that B= R ~'. Such a field, of course,
cannot exist under the conditions in outer space; however, this situation can be real-
ized for excitons in a solid. Let us assume that z = Q (motion along z is obvious); thus,
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1 1 .
T — 2 — -2 2 3
Z- 20¢+ 2(1’+R Jvk , 3)
where v, = R¢é; and v; = R. We have the equations of motion: R 24 = M = const,

(1+R_2) —_— — =0. (4)

Ra

d2R l(dR )2 M2
de? R3\ d:

The energy conservation law requires that (it can be obtained directly from the equa-
tion of motion)

1 dR 2 1 M2
-2 = = p2
-—-2 (1+R )(—_d't ) + 5 B2 const = v*/2, 5)

where v is the particle velocity at R = oo.

As seen from the preceding expression, the magnetic field slows down the parti-
cle’s radial velocity (this effect plays a special role at R < 1). Let us now determine the
minimum approach distance from the condition dR /dt = 0. It turns out to be equal to
the impact parameter R, = M /v. But, since the angular velocity ¢ = M /R ? retains its
former value, the atom (before leaving the region R < 1) completes many revolutions.
It can be said that the particle sticks for some time in the superstrong field region and
is ejected in a direction having arbitrary ¢.

b) An atom in a dipole field.

In the R, 0, ¢ spherical coordinate system the equation for a field line is given by

R =L sin?g, ©)

where L = const. Let us choose units in such a way that the field B=1 for L =1,
sin § = 1. Thus,

R%¢ -3R(e, R)
B- £ : . B?a L+ 3c0s?6 7

RS RG

Let us use the quantity L = R /sin” @ as one of the generalized coordinates. As the
second (orthogonal to L ) coordinate we choose s = cos 6 /R 2, and we shall retain ¢ as
the third. Then the Lagrangian assumes the form

1 . 1 . 1 R
Z=-2— sL(1+B)L + — g 3%+ — (14 B2 p2g2 ®

Here g,, , 8., are components of the metric tensor, and p = R sin @ is the distance to
the symmetry axis. Let us assume that the motion is localized in the s = 0 plane, i.e.,
@ = n/2. Thus, Eq. (8) can be simplified:

. 1 .
L= —;—(1 + L=6)L2+ = (1+ L™%) ¢2L2. ®
2
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We can introduce the Hamiltonian

1 1 1 M2
H=— —— K? + — ——o—————, (10)
2 1+1L 2 L2+ L-5)

where K is the momentum conjugate to L and M is the angular momentum. The
energy conservation law (which again can be obtained from the equation of motion)
can be written as follows:
M2
(Y +L-%)L24 ——— = vZ = const., an
‘L2 + L5 )

Let us find the reversal point, where L = 0. For it we obtain the equation

L2 L4/(LS+1) =1, (12)

where L, = M /v is the impact parameter. It is easy to see that this equation has real
solutions only for L,> (3)?/(2)"” = 1.37. Two roots are obtained in this case: the
larger root corresponds to the reversal point of a particle coming from oo, the smaller
one corresponds to that coming from the center.

For L, < (3)2/(2)'7, L does not become 0—this is due to the fact that for L < 1
the centrifugal potential does not increase, but decreases with decreasing L. For L<1
Eq. (11) becomes (approximately):

L=6 L% = 2 —Lz v2L4, (13)
The second term is small (for L, < 1). Ignoring it, we obtain the approximate

solution L = 1/[2u(y — t,)]""* for a particle arriving from L = «.
Let us now consider arbitrary motion. The Hamiltonian is written in the form

1 1 1 M2
——— K%, Pz 4 . (14)
2 g, (1+BY 2g ., 2(1 + B?) L?sin®9

H =

Here K, P, and M are the generalized momenta, corresponding to the coordinates
L, s, ¢. It is easy to show that

2 1+ 3cos?d sin%@ ] cos 26
pr_ 2rdcos® o L 2RT L - .
Lbsin2g 1+ 3cos?29 s3(1 + 3cos?9) '’

the last term in the Hamiltonian has a maximum at € = 7/2. Accordingly, with re-
spect to motion along a force line the point 8 = 7/2 corresponds to a “hump” on the
potential, and near 6 = 7/2 the motion with respect to 8 is unstable. Thus, for B> 1
the atom falls along a force line to the field source, which is again attributable to the
fact that the centrifugal potential decreases, rather than increases, as we approach the
center.
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