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It is shown that the behavior of the specific heat C, of He* at temperatures that
exceed the quantum-degeneracy temperature can be described on the basis of the
classical model of particles with pairwise interaction by making simple
assumptions about the binary correlation function.

PACS numbers: 67.40.Kh, 65.20. + w

As experimental data show, the specific heat C, of He®> and He®, which exists in
the liquid or dense-gas state, starts to decrease rapidly at temperatures of the order of
15-20 K, which are significantly higher than the corresponding quantum degeneracy
temperatures.'

The quasi crystalline or cellular models of the liquid state, whose systematic
analysis gives a discrete energy spectrum and, consequently, decreases the specific heat
at low temperatures, have been used to explain this effect.”?

Recently, Andreev* attempted to describe the thermodynamic properties of liquid
helium and hydrogen by means of the tunneling-state model, which was proposed in
Refs. 5 and 6 to explain the low-temperature properties of glass and amorphous
materials.

We shall show below that the behavior of the specific heat of liquid helium ob-
served experimentally at temperatures exceeding the quantum degeneracy temperature
can be obtained within the framework of the general model of a classical system of
interacting particles without resorting to any additional concepts.

Let us write the energy of a classical system of particles in the form

2 o0

N !
E=%RT+2-7‘{®(r)g(r)47rr2dr, 6}

where @ (r) is the pairwise interparticle potential, g(#) is the radial distribution func-
tion, ¥ is the molar volume, N is Avogadro’s number, and R is the gas constant.

We shall assume that at a moderate density of the system the g(#) function can be
approximately described by a step function of the form
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FIG. 1. Temperature dependence of the specific heat C, of He* at constant density: o—experimental data,’?
+ —calculation from Egq. (7), 1 — ¥ =29.07 cm®*/mole, 2 — V = 24.22 cm*/mole, 3 — ¥V = 16.25
cm?/mole.

g(r) =0, for r < o,

2
gr) =1, for 1> o,
Thus, Eq. (1) assumes the form
3 N? ® 2
E=2RT + — [ @ (r) 4nr-dr. 3
2 2V,

We emphasize that in the case of a potential @ (7) of general form the lower integration
limit o in (3) must be regarded as a decreasing function of the temperature. Conse-
quently, at temperatures of the order of or lower than the depth € of the potential well,
the absolute value of the integral in (3) increases with temperature, since its sign is
negative. The latter clearly gives a negative contribution to the specific heat and must
cause its rapid decrease at low temperatures.

At high temperatures the absolute value of the potential energy, which is defined
by the integral in (3), begins to decrease because of the increasing contribution of the
repulsion interaction. At temperatures 7> ¢ the potential energy changes sign and then
slowly increases with a decreasing rate, thereby determining the asymptotic limit of

the specific heat C, — %R as T— oo. Let us illustrate the aforesaid by numerical

estimates. We shall describe the interparticle interaction in liquid helium by the Len-
nard-Jones®!? potential:
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In the case of helium we assume that: € = 10.22 K and r,=2.556 A.7 After
substituting (4) in (3) and integrating, we obtain

2 12 6
E- 3 pp, 27l (-1- o _ L '.°). (5)
2 Vv 9 o9 3 o3
We determine o from the condition:
roo\2 1
c(;"—) --i—kT,wherer =0. (6)

Here, for simplicity, we use only the repulsive branch of the potential.

Finally, we obtain for the specific heat:
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C = 3 . - _
2 R+ 12V (2e)¥ ATV 4 (26) VAT 4

Figure 1 compares the results of calculations from Eq. (7) with the experimental
data for He* for three values of the density. As can be seen, the calculations and
experiment agree quantitatively, although this may partially be the result of a mutual
compensation of ignored effects.

There is no doubt, however, that the negative component of the specific heat,
which causes a rapid decrease of the total specific heat at low temperatures and occurs
as a result of the temperature dependence of the effective particle diameter, will also
appear as a result of more exact calculations that take into account the quantum
effects.

It must be emphasized that Eq. (7) has meaning only when the action radius of
the attraction forces does not exceed the average particle separation in the system.
Otherwise, when the action radius of the attraction forces is considerably greater than
the average distance between particles, the attraction energy can be described in the
average field approximation, which leads to the disappearance of the right-hand term
inside the brackets of Eq. (7). The specific heat C, of such a system decreases mono-
tonically as ~1/T ' at all temperatures.

Such a situation, as a comparison of calculations and experimental data shows, is
apparently realized in the case of neon, argon, and other condensed noble gases.
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