Energy dependences of proton polarization in the $\gamma d \rightarrow np$ reaction at angles of 43, 78, and 120°

A. S. Bratashevskii, A. I. Derebchinskii, A. A. Zybalov, O. G. Konovalov, P. V. Sorokin, and A. É. Tenishev

Physico-technical Institute, Ukrainian SSR Academy of Sciences

(Submitted 19 December 1979; resubmitted 23 January 1980)

Pis'ma Zh. Eksp. Teor. Fiz. 31, No. 5, 295-297 (5 March 1980)

The energy dependences of proton polarization at angles of 43, 78 and 120° were investigated in the c.m.s. in the energy range of 400 to 700-MeV photons. The obtained results are compared with the data of other papers.

PACS numbers: 13.60.Rj

The polarization of protons in the $\gamma d \rightarrow np$ reaction at angles of 43, 78, and 120° was measured in the c.m.s. at photon energies of 400-650 MeV. The experiment was performed in the electron bremsstrahlung beam of the Kharkov 2-GeV linear accelerator. The polarization of protons was measured by means of a spark chamber telescope which was placed at the exit of a magnetic spectrometer. The polarization values at

TABLE 1. Polarization values obtained in our experiment.

E, MeV	43°	78°	120°
375	0.47 ± 0.11	_	<u> </u>
400	-0.39 ± 0.07	_	-0.53 ± 0.13
425	-0,31 ± 0,08	-0.40 ± 0.07	
450	-:0,24 ± 0,08	-0.45 ± 0.06	-0.53 ± 0.10
475	$-:0.38 \pm 0.08$	-0.48 ± 0.06	-
500	$-:0.37 \pm 0.09$	-:0.62 ± 0.07	-0.50 ± 0.10
525	-0.27 ± 0.09	-0.57 ± 0.09	-
550	-0.20 ± 0.09	80.0 ± 97.0	- 0.53 ± 0,10
575	-:0,29 ± 0,10	-0.55 ± 0.06	_
600	-0.23 ± 0.14	-0.62 ± 0.06	-0.54 ± 0.08
625	-	-0.68 ± 0.06	-
650	_	-0.65 ± 0.08	-0.52 ± 0.08
675	-	0,55 ± 0,11	_
700	-	<u>-</u>	-0.43 = 0.10

the 43 and 78° angles were obtained with an energy resolution of \pm 12.5 MeV, and at the 120° angle \pm 25 MeV. The corresponding energy dependences for these angles have 25 and 50-MeV intervals.

The polarization of protons was determined from the asymmetry of their scattering by carbon nuclei (pC scattering) by means of the maximum likelihood method.² In the course of the experiment 425,000 proton stereotracks were recorded; 29,700 of these were pC-scattering cases, this satisfied the sampling criteria² and were used to calculate the polarization. The direction of the vector $\mathbf{k} \times \mathbf{p}$, where \mathbf{k} and \mathbf{p} are the photon and proton momenta in the c.m.s., respectively, was taken as the positive polarization value. The results obtained for the proton escape angles of 43, 78, and 120° in the c.m.s. (the corresponding laboratory angles are equal to 32, 59, and 99.5°) are listed in Table I.

Figure 1 shows the energy dependences of the polarization of protons in the $\gamma d \rightarrow np$ reaction at angles of 43, 78, and 120° in the c.m.s. The experimental results, which were previously obtained in Refs. 3-5, are shown for comparison. These data are in satisfactory agreement with our results.

FIG. 1. Energy dependences of the proton polarization in the $\gamma d \rightarrow np$ reaction. \mathbb{O} -Results of Ref. 3; \bullet -results of Refs. 4 and 5; \circ -our results.

¹A. I. Derebchinskii et al., Prib. Tekh. Eksp. No. 6, 36 (1973).

²A. A. Zybalov et al., Preprint KFTI [Kharkov Physico-technical Institute] 79-3, Kharkov, 1979.

³F. F. Liu et al., Preprint, HEPL-455, 1965.

⁴T. Kamae et al., Phys. Rev. Lett. 38, 468 (1977).

⁵H. Ikeda et al., Phys. Rev. Lett. 42, 1321 (1979).