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The dependence of the temperature of the Berezinskii transition on the density of
antiferromagnetic bonds r,; is obtained for a planar magnetic material (x y-
model). It is shown that this density plays the role of an effective temperature, with
the phase transition disappearing above a certain density n},.

PACS numbers: 75.40.Bw

In this paper we examine a planar magnetic material (x y-model), in which a
small number of antiferromagnetic bonds are introduced in a random manner. The
appearance of these bonds leads to the formation of so-called frustrations,’? which are
vortex-type topological formations with a half charge.? If the density n,s of antiferro-
magnetic bonds is small, then all frustrations are paired in such a manner that the
topological charge of the pair is equal to zero. Such pair of frustrations constitutes a
dipole which is formed by charges with a modulus equal to one-half the vortex-charge

p= V2w . Jis the coupling constant in energy:
H=1[d’r (V)2 §))

¢ is the rotation angle of the spins. The size of these dipoles is equal, in order of
magnitude, to the lattice dimension. At temperatures different from zero a dipole, held
in the lattice, has a degree of freedom which is attributable to the fact that the dipole
can alter the sign of its direction by flipping of a vortex from one frustration to the
other. Because of the long-range interaction of dipoles (interaction energy ~r ~?), the
possibility of a phase transition to a state, in which the direction of each dipole is
frozen, is not excluded in principle. There are indications,®> however, that such phase
transition is missing in our system (the power of the potential decrease is the same as
the dimensionality of the space), and everything that follows will be done with this
assumption.

As Berezinskil showed,* a “pure” planar magnet has a phase transition which is
attributable to the fact that above a certain temperature the vortex pairs start to
dissociate.” In our case, in addition to the ordinary vortex pairs whose size and num-
ber are controlled by the temperature, there are also forcibly introduced half-vortices.
Thus, the energy of a system with m pairs of temperature vortices, ignoring spin
waves, can be written in the form®:

r. —r,
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The quantity 2u is the energy necessary for the formation of one pair of temperature

vortices. The summation is done over all vortices and frustrations, and for the frustra-

tions it must be assumed that |¢| =} p. In addition to integration over all possible
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positions of the moving vortices, in the statistical sum we must now also take into
account all possible distributions of the frustration signs with allowance for the overall
neutrality:

b K2m 2m rk"l ‘
L= e 2 (0 [ drexpiB I guq; ln|—
m=0 (m!)? jmlD]. kt 1 ro !
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Here r;K = exp( — Bu), and the integration domain D; is defined by the condition
that the vortices cannot be closer than the lattice dimension 7. If, following Ref. 6, we
now perform a renormalization in (3) by changing the scale r, — r, + dr;, then we
obtain the same equations as in Ref. 6:

2 1
d(Kro) =-(ﬁp2_2)"_’
dr To
° )]
d(Bp?)
— =—2n2[3p2(Kr3)2—1—- ’
dro T

which leads to the existence of the same phase transition as in the “pure” model. The
transition temperature is determined by the condition:

1

TP =2 ®)

c

[ignoring the small exponential quantity exp( — S.u)], except that now the vortex
interaction constant p? depends on the temperature because of the polarizability of the
dipoles. It is easy to obtain this polarizability. The energy of the dipole system in an
external field E has the form

U=~ |E]| f”o;"i cosf, —= 2 SR (6)
i it i
Here 0, are the fixed dipole rotation angles o = + 1, and the summation is done
over all dipoles. The average dipole moment (D ) is directed along the field E:

; {E}(E “pryo. cos b expi— BUL))
<D'>=(H—fd6i> AN .
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° 2 expl - BU}
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For the polarizability ?;%(13 Y| 5_o we obtain:

1
(14
o
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Taking into account that (0,0 ;) = (0%)8,; = §,; (since the entropy of a unit area
is not equal to zero even at T = 0) and also that the dipole density is equal to 2n,,, we
obtain the dielectric constant of the medium:

e=1 +2,3172]naf- 0
Therefore, the statistical weight of a pair of vortices has the form

4nf r 2p

In— -

T+2”2]naf r T
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From (5) we obtain the equation for the phase-transition curve

2
T, +2a%In,p =al. )
For n,n% = 1/2m the transition temperature vanishes. The expression
Tg =T+2a%In,, (10)

plays the role of the effective temperature of the x y-model with a subsystem of frustra-
tions, since the spin—spin correlator is defined by this expression

ry g

’

(1)

s (r),s(%)) > = |—t

r
[4]

In fact, the spin-deviation angle ¢ can be represented in the form ¢ = ¢ + ,
where ¢ are small temperature deviations, and ¢ is determined by the configuration of
the dipoles:

(@,,r -x;)

) = %

i

9;
Jr - Xillz

(a, is the direction and x; is the location of the ith dipole). Therefore,

<(s@),s{t))p> =

L
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(S is the system area). A calculation leads to the result (11).

Thus, under the curve (9) we have the problem of the “pure” x y-model with an
effective temperature (10). It follows from this, in particular, that the critical index of
the phase transition is conserved.
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We note that the result (11), unlike (8), does not depend on the assumption of no
frozen state for the dipole subsystem.

The author wishes to thank G. E. Volovik for suggesting the problem and for
useful discussions, and also V. L. Pokrovskii and M. V. Feige’'man for useful
discussions.
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