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The existence of a static-current resonance in semiconductors with a superlattice is
predicted theoretically when the multiple Larmor frequency coincides with the
multiple Stark frequency.
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At present, a number of resonance effects in semiconductors, in particular, the
cyclotron resonance in ordinary semiconductors’ and the Stark resonance in semicon-
ductors with a superlattice’ have been thoroughly investigated.

Any type of electron resonance is associated with the motion of electrons in any
two fields, each of which leads to a finite motion with a characteristic frequency, one
of which plays the role of the natural frequency of the electron and the other has the
role of the the frequency of the external force. A coincidence of these frequencies
produces a resonance. In the cyclotron resonance the Larmor frequency plays the role
of the natural frequency and the frequency of the variable electric field plays the role
of the frequency of the external force. In the Stark resonance the natural oscillation
frequency of the electron—the Stark frequency and the frequency of the induced
field—as usual is the frequency of the electromagnetic field. We note that the electron-
ic oscillations with the Stark frequency in relatively small electric fields occur in semi-
conductors with a superlattice.

314 0021-3640/80/060314-04%00.60 © 1980 American Institute of Physics 314



If the periodicity of the dispersion law is essential as a function of the quasi
momentum, then the electron has a finite, periodic motion in a constant electric field
with the Stark frequency and in a constant magnetic field with the Larmor frequency.
We can expect that the constant current will have a resonance behavior when the
Stark frequency coincides with the cyclotron frequency. We call this resonance the
Stark-cyclotron resonance. Since the dispersion law for an electron is nonquadratic,
the resonance also occurs at multiple Larmor and Stark frequencies.

For simplicity, we shall limit ourselves to a one-dimensional super-lattice for
which the dependence of energy on the quasi momentum can be written as follows®

e(p)=¢ (b, )+p*/2m; ¢

where € is the electron energy, p, is the quasi-momentum component directed perpen-
dicularly to the axis of the superlattice, m is the effective electron mass characterizing
the motion of an electron perpendicularly to the axis of the superlattice, €, (p,) is the
part of the energy that characterizes the motion of an electron along the axis of the
superlattice, p; is the quasi-momentum component along the axis of the superlattice,
and €;(p,) is the periodic function of the quasi-momentum p, .

To obtain a Stark-cyclotron resonance, the constant electric field E must be di-
rected parallel to the axis of the superlattice and the magnetic field H must be directed
at an angle to the axis of the superlattice. It can be show that the condition for a
resonance in this case looks as follows:

ny{d= Ry - )
Here 2 = -’l?eEa is the Stark frequency, a is the superlattice constant, @, = eH;/mc

is the Larmor frequency, H| is the magnetic-field component along the axis of the
superlattice, and », and #n, are integers.

The magnetic-field component H, relates the finite motion along the axis of the
superlattice to the Stark frequency and the finite motion in the perpendicular plane to
the axis of the superlattice to the Larmor frequency, and, although H, is not a part of
the resonance condition the presence of this component is necessary for its existence.

We should note that the constant electric field has a double role. On the one
hand, it produces a constant current, and on the other, it forms the resonance frequen-
cy. In the cyclotron resonance these functions are divided between the amplitude and
frequency of the alternating current.

Let us calculate the current density. We shall proceed from the kinetic equation
in the v approximation

(eE+i—[v,H])58—f—- =—v(f=f), ?)

where v = de/dp is the electron velocity, v is the characteristic frequency of collisions,
and f; is the equilibrium Boltzmann distribution function. The following relation can
be obtained for the electric current

2e

(2a%)3

j = Jdpf, (p)vj"e*'”v(p'wr, @)
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where p” satisfies the equation
dp” : e ;
:{—=eE+-———[v(p ,H1. O]
r o
As indicated above, the electric field is directed along the axis of the superlattice.

For specificity, we use the following expression for e"

€= Ae(l - cos ) . )
We shall assume, moreover, that |2}, (@ |>|®, | = |e|H, /mc. Using the last assump-

tion, we can solve the equation by iterations according to the parameters H,/H <1
and |, ,, <1, after which for the electric current we obtain

Ae 2
eNAca Ha \? [<T ” v(Q-ho ) Ha\2
] oy e oy

L H % 1(-5) ne=avo 2 4(Q=he)? "
I o\ T I
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Here N is the electron concentration and 7, is the modified Bessel function.

As seen from Eq. (7), the resonance condition corresponds to condition (2) in
which we should assume that n, = 1. This is attributable to the specific form of the
dispersion law (6). The corresponding resonance component reaches a maximum or a
minimum at the point that is shifted by + v relative to the resonance, rather than at
the resonance point. In this sense the behavior of the current in the Stark-cyclotron
resonance resembles the behavior of the imaginary part of the high-frequency conduc-
tivity in the cyclotron resonance.’ The extremal values of the resonance current are
determined by such relation

NAeca noal (2 H
e € o\ L {(— a2
Jext =% —-——-—-e"mT(———-)—————T In mT( ) . (8)
¥ Howll <é5—) H %
| [ T 1}

Of course, to obtain a sufficiently sharp resonance, the inequalities |2 | and |o |>v
must be fulfilled.

As seen in the relation (8), the current changes its sign, and in the neighborhood
of the resonance there is a negative absolute conductivity and, therefore, an instability
of the electric current is possible.

If the electric field, along with the constant, has a variable component with re-
spect to time, which changes periodically with the frequency w, then the resonance
condition can be re-written as follows:

nlﬂnnzw”+n5w, )
where n, is an integer.
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