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We describe analytically the nonlinear dynamics of the stationary waves propagating in an anharmonic
medium along layered or modulated periodic waveguide system. The exact dynamical equations for discrete
systems of coupled anharmonic oscillators, which are typically used for the description of real experiments on
the localization of powerful optical fluxes, are analytically derived on the microscopic level and the conditions
of their applicability are obtained. The criterion of the appearance of a spatially localized state in such systems

is derived.
PACS: 05.45.Yv, 42.65.Tg, 42.82.Et

In recent years, interest in researches on the theory
of nonlinear waves and solitons is mainly concentrated
on studying the nonlinear dynamics of real physical sys-
tems with their discreteness, defect character, internal
microstructure, and spatial inhomogeneity. Of special
interest are layered structures of different types promis-
ing for technological applications [1-6]. Examples of
such media are multilayer magnets [1], which are used
for the creation of elements for data storage and read-
out based on magnetooptical properties of such multi-
layer materials, layered crystals with polyatomic unit
cells (in particular, high-T, superconductors and their
isostructural analogs, which contain layers with sub-
stantially different conducting and elastic properties [2]),
corrugated optical fiber waveguides in nonlinear optics,
etc. The simultaneous effect of the layered nature of
the medium, which substantially alters the spectrum of
its linear waves and their dispersion, and the nonlinear-
ity of the medium can give rise to new physical effects
such as dependence of the transparency of the medium
on the power of the wave being transmitted [6], spatial
localization of nonlinear waves (powerful light pulses) in
periodic arrays of optical waveguides [4,5] and the ex-
istence of so-called “gap solitons” [3]. The study of all
these experimental works has given rise to the present
investigation of such systems from the theoretical point
of view.

In this Letter, we present the analytical analysis
of the spatial localization of nonlinear stationary waves
propagating in an anharmonic medium containing thin
plane-parallel layers having different linear properties
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from the characteristics of the medium itself. Owing
to the simultaneous appearance of linear localization at
the defect layers (in the case when the layers play the
role of waveguides) and nonlinear localization due to the
anharmonicity of the medium around the layers, it be-
comes possible to have a resultant localization of the
wave flux in a region containing a large number of plane
layers. This effect has been observed experimentally in
planar nonlinear optical waveguides with a periodically
modulated cross section [4,5]. The theoretical descrip-
tion of the nonlinear properties of layered structures is
typically done using discrete models for the wave ampli-
tudes in the individual waveguides [4, 5, 7] which are de-
scribed phenomenologically by difference equations with
arbitrary parameters. Under a number of simplifying as-
sumptions a consistent derivation of these equations has
been done in the simplest case when the nonlinearity
is taken into account only in thin layers separated by
wide regions of linear medium [6,8]. We consider the
case when all layered medium is substantially nonlinear
and it is a nontrivial problem to find the effective non-
linearity of the individual waveguides and their effective
interaction. The equations describing the propagation
along the layered structure of a nonlinear monochro-
matic wave with an envelope that is slowly varying in
space and time are derived both for (I) nonlinear op-
tical medium containing plane-parallel waveguides, i.e.,
layers characterized by a larger refractive index than
the optical medium between them, and for (II) optical
waveguide of variable cross section. Material parameters
of such layered structures are periodically modulated in
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the direction perpendicular to the direction of the wave
propagation.

Consider the propagation of a nonlinear electromag-
netic wave along the layered nonlinear optical medium
containing plane-parallel waveguides, i.e., defect layers
characterized by the refractive index differs from that
one in the optical medium between them. We assume
that the layers lie perpendicular to the z axis. In the case
of a plane-polarized wave propagating in a nonmagnetic
medium (g = 1) along the layers (in the z direction),
with its electric field vector E directed along the y axis
(El||iy), Maxwell’s equations take the form

n?(z,E)-0’E/0t> —* - AE = 0, (1)

where the refractive index n depends on the coordinate
z and the electric field: n = ng + n1(2) + n2(E), with
n1(z) = m1 in the waveguides and nq(z) = 0 outside
them. (Defect layers represent optical waveguides for
ny > 0.)

We assume that the modulation of the parameters of
the medium and the energy density in the wave are small,
i.e., n1,ns < ng, and the dependence of n on z needs to
be taken into account only in the linear refractive index.
We limit discussion to solutions in the form of nearly
monochromatic waves with a fixed wave vector k = i k.
In terms of the electric field E, which is slowly varying
with z and ¢, the nonlinear contribution to the refrac-
tive index takes the form [9]: na(E) = o - a(w) - |E|?,
where 0 = =£1 for focusing and defocusing media, cor-
respondingly, and a(w) is the nonlinear permittivity. If
the thickness b of the defect layers (optical waveguides)
is much smaller than the distance 2a between them, then,
introducing the new time 7 = ¢ - ack/2n2 and the new
coordinate £ = z-k+/a/ng, we can reduce Eq. (1) to the
following standard nonlinear Schrédinger equation

2
ig—lj +%+2a- |E’E = —Xn:,\-a(g—zan)-E, (2)
where parameters A=2b(n,/\/ang)k and a=a+/a/ng-k.

In real optical experiments the statement of the prob-
lem may be somewhat different [4]: a nonlinear electro-
magnetic wave propagating in a plane optical waveguide
of variable cross section (Figure). A nonlinear optical
medium with refractive index n = ng + na(E) occupies
the region 0 < y < h(z) = ho + A(z), where A > 0, and
the plane-polarized wave propagates along the z-axis. If
the optical waveguide is bounded by an optically non-
transparent medium, then, in the case of weak modu-
lation of the layer thickness, solutions close to a mono-
chromatic wave can be written in the form

E =i, - {E1(z,t) - cos(kr — wit)—
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Optical waveguide of variable cross section

—Es5(z,t) - sin(kz — w,t)} - sin[ry/h(2)], (3)

where E = E; +iE», E; » varies slowly with z and ¢, and
we have chosen a relation w.(k) ~ (c/no) - [(7/ho)? +
+ k?]'/2. (Here the slow dependence E; »(t) takes into
account the difference of the true frequency w(k) at a
given k from the frequency w,(k) due to nonlinear ef-
fects and modulation of the parameters of the medium.)

Introducing the new coordinate £ = z - (wa«/c) X
X v/2ang/3 and time 7 = t - aw,/3ng, we can reduce
Eq.(1) for the slowly varying function E, after its inte-
gration over the thickness of the waveguide, to the fol-
lowing standard equation

OE O°E

where, in the case of weak modulation of the func-
tion h(z) (Amax < ho), AE) = [3c*/awlhf] x
x A{(c/wi)y/3/2ang - £}. Consequently, the thicker re-
gions of the optically transparent material play the role
of effective waveguides in the two-dimensional nonlin-
ear optical system under consideration, but the function
A(z) can be replaced by a set of -functions only if these
regions rather wide.

Thus for a slowly varying in space and time envelope
of a nonlinear monochromatic wave propagating along
the periodic layered structure (along the z-axis) con-
taining identical plane-parallel layers differing in their
linear properties from the surrounding matrix and sep-
arated by a distance much greater than their thickness,
the evolution nonlinear Schrédinger equation (which is
standard in soliton theory) is derived containing distur-
bances in the form of the spatial -functional array:

Ou  0%u 2, _
15+ﬁ+20|u|“__;)"5(2—26171)-% (5)

where the z-axis is directed perpendicular to the defect
layers; the sign function o = £1 for “focusing” and “de-
focusing” media, respectively; the plane defect is char-
acterized by A > 0 in the case when the narrow layers
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have waveguide properties (they “attract” linear waves);
2a is the distance between the plane defect layers. For
simplicity, in Eq. (5) we used the initial symbols of vari-
ables z and t instead of £ and 7. Therefore, in order
to get back to the initial parameters of the system one
should use the transformations with whose help Eqgs. (2)
and (4) were obtained.

For waves of a stationary profile the problem is equiv-
alent to the study of nonlinear excitations in a one-
dimensional system containing point defects (nonlinear
local oscillations). For a single isolated defect this prob-
lem has been investigated in Refs. [10] for arbitrary
signs of ¢ and A. In the case of periodic system of de-
fects (defect layers) interacting through a nonlinear field,
the solution of the problem becomes more complicated,
and the problem is reduced to one of solving the non-
linear Schrédinger equation (5) for stationary localized
states of the form wu(z,t) = u(z) exp(—iwt) in the region
outside the distinctive (defect) layers, with the following
boundary conditions at them (at z = 2an):

u|2an70 = u|2an+0a (6)
(au/az)|2an+0 - (au/az)|2an—0 = _/\u|2an-
Let us consider the case of focusing (¢ = +1)

medium. Then the solution of Eq. (5) in the region n,
where 2an < z < 2a(n + 1), have the following form:

un(z,t) = up(2) exp(—iwt) =

= §ndn{£n(z — Zn), Qn}exp(_iwt)' (7
Here dn(p, q) is the Jacobi elliptic function with modulus
q, parameter &, = £/(2 —g2)'/? characterizes the ampli-
tude of the wave, and parameter ¢ is related to the value
of w: € = v/—w. The weak coupling of the waveguides
(essential difference of the field in the waveguides and be-
tween them) means strong distinction of values of the el-
liptic function dn(p, ¢) in different points, i.e., the close-
ness of its modulus to unity: ¢, = /1 —¢2 <€ 1,&, ~e.
Parameter z,, (which is different for various pairs of ad-
jacent waveguides) characterizes the skewness of field
distribution between these adjacent waveguides and the
difference of the field amplitudes inside them.

A convenient characteristic of the localized wave is
provided by the field amplitude U,, = u(z = 2an) in-
side the n th waveguide which divides the regions with
numbers (n — 1) and n. Then, using the boundary con-
ditions (6) at the n th waveguide (taking into account
the form of solution (7) and the definition of the field
amplitude U,,), we can eliminate the modula g,, and link
the pair of parameters (U,, z,) with the previous one,
(Un-1,2n-1). It allows us to solve the problem, for ex-
ample, numerically. On the other hand, in the limit of

weak dynamic coupling between waveguides (g, < 1)
and the condition of small-amplitude waves, U, < ¢, all
the calculations are simplified and can be carried out
analytically. Taking the solution (7) for u, at the points
z = 2an and z = 2a(n + 1), we can easily express the
parameter g, in the region n through U,, and U, ;1:

4, = (2/€)y/UnUny1 - exp(—ca). (8)

In a focusing medium, in which the frequency of the
wave decreases as its amplitude grows, the condition
g, < 1 actually implies the inequality ea > 1 (the
dynamical coupling of the waveguides decreases with
increasing amplitude). As the further investigation is
carried out just in this approximation, let us determine
validity conditions of the inequality ea > 1 in the real
physical experiments. For this purpose we need to re-
turn to the transformations of the coordinate and of the
parameter A which have been used for obtaining Eq. (2).
In the case of small-amplitude envelope solitons under
consideration the inequality €a > 1 reduces to the in-
equality Aa@ > 1. Returning to the initial variables of
Eq. (2), we transform this inequality in the case of a
system of optical waveguides to the following form:

2ab - k? - 2ny /ng = (87%2ab/p?) - ni/no > 1,  (9)

where p = 27 /k is the wavelength of the propagating
light.

For the systems of optical waveguides with n; ~ ng
and a ~ b for visible light from (9) the inequality follows:
a,b > 3-107%cm. This relation holds for the waveguide
arrays of Refs. [4] having a,b ~ 5-10 % cm. If one com-
pares formulas (2) and (4), then the relation between
the changing of the waveguide thickness Ah and the cor-
responding effective changing of the refractive index in
incrassate regions can be written in the form

ny _ Ah iAh;ﬂ
no hik?  4n? A}

(10)

Substituting this relation into (9), we come to the fol-
lowing condition:

_ 2ab 2Ah

=20 23h o 11
B The O (1)

For the waveguides of Refs. [4] having b = 4um,
2a = (8 + 11)um, Ah = 1lum and ho = 2um, we ob-
tain J = 8 + 11 > 1. Therefore, our approximation of
weakly coupled waveguides holds for the description of
the indicated experiments.

Using solutions (7) in the regions (n — 1) and n, we
can rewrite the boundary conditions (6) as follows:

V& —UNWUL - &+t
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8~ U U -8k =N (12)

Substituting expressions for ¢}, (8) and for &, =

=¢/4/1+ ¢'2 into Eq. (12), we obtain the equation for
the amplitudes U,, and U, 11, containing as parameters
the frequency characteristic ¢, waveguide parameter A
and the distance between waveguides 2a. Allowing for
the inequalities U,, < € and ea > 1, this equation for
the frequencies close to the lower edge of the continuous
spectrum, wp &~ —A%/4 — A2 exp(—\a), can be reduced
to the following one:

(wo —wW)Up — U3 + 092U, —Up_1 — Upy1) = 0. (13)

Here vop = (A\?/2) exp(—Aa) is a parameter character-
izing the effective interaction of the waveguides via the
nonlinear field. Since we are investigating only station-
ary states with a time dependence ~ exp(—iwt), the sys-
tem of algebraic Eqgs. (13) corresponds to the phenom-
enological system of dynamical equations

iaU"
ot

—woUn —v0(2Up — Up—1 — Upny1) + [Un*Un = 0.

(14)
Thus, in the case of weak dynamic coupling between de-
fect planes the problem is reduced to an effective system
for an infinite chain of coupled anharmonic oscillators
(rotators).

The theoretical description of experimental results
in [4,7] was carried out in the framework of the discrete
nonlinear system of coupled anharmonic oscillators de-
scribed by the equation

iaUn
ot

+BU, +C(Up_1 +Upny1) +7|Ua|?U, =0 (15)

for the electric field U, in the n th waveguide. This
equation is of the same form as Eq. (14) obtained by us,
but in works [4, 7] Eq. (15) was actually postulated and
the phenomenological parameters contained in it were
found by comparing with the experimental data.

The parameters of the system of different Eqgs. (14),
describing an infinite chain of coupled anharmonic oscil-
lators, are all determined through the microscopic char-
acteristics of layered medium and propagating wave (lin-
ear and nonlinear refractive indexes, transverse size
of the waveguides and the distance between them, the
wavelength of the propagating light). This allows us
to compare the analytical results with the experimen-
tal data. The comparison of Eq. (14) derived by us
from microscopic considerations with the phenomenolog-
ical equation (15) results in the following dependences
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of the parameters of Eq. (15) on the material parameters
of the system under consideration:

C/y=wvo = N2 exp(—Aa)/2 =
= [b?no(Ah)?/2ah§k?] - exp(—4abAh/h}), (16)

18//7: —wo — 21)0:)\2/4=b2n0(Ah)2/4ahgk2

Let us consider the case when the discrete Egs. (13)
can be reduced to the differential equation. This means
that the localization region of the nonlinear wave in the
layered medium is much larger than the period of this
structure. This condition imposes an additional restric-
tion on the wave amplitude: instead of the inequality
U, < € used by us under the derivation of Eq. (13),
we now have a stronger inequality U, < Aexp(—Aa/2).
With the indicated stipulations, Eq. (14) can be replaced
by the nonlinear Schrédinger differential equation for the
function U = U(Z,t) where the continuous coordinate
Z = 2an substitutes the discrete number n:

2
_@B_U — 40,21)06—[] + woU — |U|2U =0. (17)

This equation has the well-known soliton solution of the
form

Un ~ v/2(wo — w) - ch ! (ny/(wo — w)/vo) - exp(—iwt),

which describes analytically a nonlinear wave localized
in the transverse direction and propagating along a lay-
ered structure. Such a bright spatial optical soliton (“su-
persoliton”) was observed, in particular, in the experi-
ments of Refs. [4,7].

It is follows from (8) that in the case of weak
“superlocalization” (U, =~ U,11) we have ¢ =
~ (4U/X)exp(—Aa/2). On the other hand, the
parameter ¢' defines the minimum value of the
elliptic function dn(p,q). Therefore, the mini-
mum field wu(z) between waveguides is equal to
Umin = €¢' & Ag'/2. Then the ratio of the field inside of
the waveguides to the field between them is of the order
Of Umax/Umin ~ exp(Aa/2)/2 > 1. The state localized
in a large number of waveguides represents, in fact, a
“supersoliton”, i.e., spatially coupled system of a few
solitons each of them localized in the waveguide.

We particularly note that the spatial localization of
the wave flux, in principle, is possible for an indefinitely
small power of this flux — it is required only a sufficient
closeness of the frequency w to wg. However, such a
localized excitation arises not for any initial character-
istics of a flux (in our case — for power and profile of
the injected light beam). The initial profile of a beam is
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essential in this case. For Eq. (17) the condition of the
appearance of localized state reduces to the inequality

+oco
/ dZ|U| > 2v/2a\/vgIn (2 + V/3). (18)

Since in our designations Z = 2an and the ini-
tial beam is localized in the experiments in the re-
gion of the order of the waveguide size, then the indi-
cated inequality can be rewritten as follows: wumax >
> X-exp(—Aa/2) -In(2 + /3) . Such a threshold ap-
pearance of the localized state is really observed experi-
mentally. Unfortunately, the experimental data in [4] are
cited only for several powers of the flux higher and lower
of the critical value, but this value itself is not indicated.

In conclusion, we studied analytically the character
of localization of nonlinear stationary waves propagat-
ing along a periodic system of thin plane-parallel defect
layers (waveguides). It was shown that for weak cou-
pling between waveguides the problem reduces to an ef-
fective periodic system for an infinite chain of coupled
anharmonic oscillators. The system of difference equa-
tions was analytically derived for the description of such
an oscillator chain. It was found the dependences of
all the coefficients of these equations on the microscopic
characteristics of layered medium and propagating wave.
The spatial localization (“superlocalization”) of the wave
flux in such systems was investigated and the solution
describing the wave localized in the transverse direc-

tion to its propagation was derived. The criterion of
the appearance of localized state was obtained. Our re-
sults can be applied for the description of experiments
on the localization of powerful optical fluxes in layered
or modulated structures and in periodic arrays of optical
waveguides.
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