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We propose novel model system for the studies of superconductor-insulator transitions, which is a regular
lattice, whose each link consists of Josephson-junction chain of N > 1 junctions in sequence. The theory of
such an array is developed for the case of semiclassical junctions with the Josephson energy E; large compared
to the junctions’s Coulomb energy Ec = e® /2C. Exact duality transformation is derived, which transforms
the Hamiltonian of the proposed model into a standard Hamiltonian of JJ array. The nature of the ground
state is controlled (in the absence of random offset charges) by the parameter ¢ ~ N2 exp(—+/8E;/E¢), with
superconductive state corresponding to small ¢ < g.. The values of g. are calculated for magnetic frustrations
f=0and f =1/2. Temperature of superconductive transition T.(g) and ¢ < g. is estimated for the same val-
ues of f. In presence of strong random offset charges, the T = 0 phase diagram is controlled by the parameter
g=gq/ V/N; we estimated critical value g. and critical temperature T, (7 < @) at zero magnetic frustration.

PACS: 74.40.+k, 74.81.Fa

Introduction and model. Quantum phase transitions
(QPT) between superconductive and insulative states in
Josephson-junctions (JJ) arrays with submicron-sized
junctions were intensively studied, both as function
of the ratio between Josephson and charging energies
Ej/Ec , and of the applied transverse magnetic field
producing frustration of the Josephson couplings (cf.
e.g. review [1]). To a large extent, an approach based
upon ”duality” between Cooper pairs and superconduc-
tive vortices [2], was used for theoretical description
of phase transition and for interpretation of the data.
There are several difficulties related with this approach:
i) duality transformation to vortex variables cannot be
implemented exactly for the standard Hamiltonian of JJ
array, and some poorly controlled approximations are
necessarily used, ii) comparison of theory with exper-
iments is complicated by the fact that the normalstate
resistance of junctions R, is close to quantum resistance
Rg = h/4€? in the transition region, thus E; ~ Ec ~ A
and standard approximation of the local in time, “phase-
only” Hamiltonian cannot be justified, iii) randomly
frozen ”off-set” charges known to exist in all JJ ar-
rays introduce random frustration into the kinetic en-
ergy term for vortices; the role and relative importance
of this effect for the S-I transition is barely unknown.

In the present Letter we propose and study mod-
ified version of JJ array (shown in Fig.1) which pos-
sesses quantum phase transition within parameter range
E; > Ec = €?/2C. Each single bond of this novel ar-
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Fig.1. The array of Josephson wires. Small circles repre-
sent the superconducting islands connected by Josephson
junctions (crosses). The phase differences fx,q,, are de-
fined on the bonds of the array. The large circles denote
the vertices of the dual lattice

ray contains a chain (refered to as Josephson wire, JW)
of N > 1 identical junctions with Josephson energy E;
and capacitance C. We neglect self-capacitances C;g
of islands compared to junctions capacitances C. La-
grangian of this array (M x M plackets) is:
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where sum goes over all junctions shown in Fig.1, and
9; is the phase difference on the j-th junction. Phase
differences ¥J; are subject to the constraints on each
lattice placket (counted by dual lattice coordinate r):
Y0¥ = 2nfr = 2n®;/®o, where &, is external mag-
netic flux through the placket r. An effective Josephson
coupling Ef}ﬂ between the nodes of JJ lattice is sup-
pressed as Ej/N, whereas effective amplitude of quan-
tum phase slip processes (i.e. amplitude of vortex tun-
nelling) is enhanced, either o< V in the absence of off-set
charges, or o« v/N, if off-set charge disorder is strong.
Therefore, at sufficiently large N the whole array will be-
come insulating even if the ratio E;/E¢ is large. Such
a model possess two important features which makes
theoretical analysis simpler: i) for a long chain of junc-
tions, semiclassical energy-phase relation E(¢) is piece-
wise parabolic, with a period ¢ € (—m,7), and ii) an
amplitude v of an individual quantum phase slip in each
of N junctions is small, v K« Ejﬁ; therefore the simplest
vortex tunnelling Hamiltonian is an adequate descrip-
tion of multiple phase slips. On experimental side, the
advantages of the proposed system are: i) an effective
Josephson frequency of an array can be made small, al-
lowing for clear separation between collective bosonic
excitations of an array and single-electron excitations
within superconductive islands, and ii) superconductor-
insulator transition can be explored with a set of arrays
with exactly same parameters E; and E¢ as function of
N.

Duality transformation. Following paper [3] where
ground-state quantum properties of a single Josephson
wire were analysed, we present classical Josephson en-
ergy of our array in presence of frustrating magnetic
field in the form:

E
E, TN (Ox.a, — 270x.0,)°

I = S a7
N 2)
a1:(1,0), aZZ(Oal)a

where gx,,, are integer numbers, 6y, ,, are phase vari-
ables associated with bonds of the lattice and subject
to the set of constraints Ox,a, + Ox+as,a1 — Ox,a1 —
—0x+ay1, 0, = 27 fr. Minimization over €’s in presence of
constraints lead to an equivalent expression in terms of
vortex variables p,:

cl - 27‘- EJ ZG’I‘,’I" -

r, 7!

)(pr’_fr)a (3)

where G, is the Green function of Laplacian opera-
tor on a square lattice; in Fourier space G~ = 4 —
—2cos kg —2cos ky. Note that the same Green function
determines Coulomb interaction between Cooper pairs

located at the node islands x and x' of the original lat-
tice: Eo(x,x') = N(2é,)2 Gx, x'-

To construct quantum Hamiltonian in vortex vari-
ables, we introduce a set of “second-quantized” oper-
ators agp; and afp} (a pair of operators for each set
of vorticities {p}). Classical states can be viewed as
an infinite-dimensional lattice (with the dimensionality
equal to the number of sites of the lattice dual to the orig-
inal JJ array). A quantum phase slip in a junction is the
process which changes the vorticities in two neighboring
cells by +1, with an amplitude Y, ;». The Hamiltonian

then reads
H= Z E. ({p}) af{"p}a{p} - = Z 'I‘p,p,a?p}a{p,}.
{r} {r} . {#'})

(4)
The first sum runs over all the configurations of the vor-
tices. The second sum runs over all nearest-neighbors
directed bonds in the lattice of the classical states of the
array. By definition the nearest-neighbors in this lat-
tice are the sites connected by one quantum phase slip,
therefore configurations p and p’ differ by their vortic-
ities in two neighbouring dual sites » and 7' = r + b.
It is possible (due to neglect of Cj,s) to show that tun-
nelling amplitudes Y, ,» depend on the dual coordinates
r,7' only, i.e. it does not depend on all other parame-
ters specifying configurations p and p'. Below we denote
this amplitude as T, ,» and will specify its explicit form
later. The next step is to perform Fourier transformation
from the set of integers {p} into the set of phase vari-
ables ¢, associated with sites of dual lattice, according
t0 agpy = Yipy agpye’®’; agpy = [ Dy agpye™¢. Now
the Hamiltonian (4) can be written as

H = Hd [ 2N {W}La{w}—

1 . .
- Eazp}a{q,} Z X, exp (ipr —ipe) + hoc]|, (5)
where

[r,r']
~ 0 0
L= Gr r R —9 _
S 6er (-5~ 1) (~igg =)
and the sum is taken over all non-directed bonds on the
dual lattice. The corresponding first-quantized “dual”

Hamiltonian in terms of vortex number and phase oper-
ators N, and ¢, reads:

H = 4EC Z(Nr - f)Gr,r’(Nr’ -f)-

T

B % Z |:|TT’T,|ei(‘Pr—‘Pr’+va-’) —+ hC] s (6)

[r,r']
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where X, = ArgY,,.. In Eq. (6) we define “dual

charging energy”
EC:ﬂ'zEJ/2N, (7)

uniform “charge” frustration f € (0,1), frustrated
“dual Josephson” couplings with the local strengths
Ej(r,7') = |Y, | and “magnetic” frustration parame-
ters ', = 5= > Xr,»- The Hamiltonian (6) is of the
standard form for the Josephson-junction array with
junction-dominated capacitive energy. An important re-
mark is in order: the Hamiltonian defined by (6) was de-
rived neglecting single-electron excitations within each
superconducting island; this is legitimate below the par-
ity effect temperature T* ~ A/log(vAV) only [4]; we
will assume 7' < T™ below:

If the original array is free from background charges,
one finds, following derivation in Ref.[3], that Y, . =

'I‘fyST),, where T = 2Nv, and 'y(l) =

+. = 1 for nearest neig-
)
bouring cites r, 7' on the dual square lattice, and zero

otherwise.

211/4 1/4 2F;
v= Tr (E5Ec) " exp | -2 Fo (8)

is the amplitude of a tunneling process (quantum phase
slip) in each of N junctions which constitute an elemen-
tary link of the JJ array. In this case E; = T = 2Nwv
whereas I';, = 0. The nature of the ground state is then
controlled by the value of

q=E;/Ec = AN*v/n?E;. (9)

The “insulative” (in dual variables ) state is realized
(at f = 0) for ¢ < ¢g. = 0.5, according to the lowest-
order variational calculation [5] and Quantum Monte-
Carlo simulations [6, 7]. Below we develop more accu-
rate variational method and calculate g. for f = 0 and %;
we will also find T' = 0 expression for the superconduct-
ing density ps(q) of the wire array at ¢ < ¢.. Insulating
state of the wire array is realized at ¢ > q.; here we
calculate effective dielectric permeability €(g).

Background off-set charges coupled to the “bond” is-
lands modify [8] phases of amplitudes of phase slips in
different junctions: vy = veiX*. If off-set charge dis-
order is strong, phases xj are totally random and dis-
tributed over the circle (0,27). As a result, tunnelling
amplitudes T, ,+ constitute now Hermitian random ma-
trix with Gaussian statistics:

TT,’I" — _E'f; . 77(_,12, . z‘r,T'a Eg = 2\/JV’U, |Z,,.’,,.,|2 = ]_
(10)

The strength of “dual Josephson coupling” is suppressed
due to charge disorder by the factor 1/ VN, and relevant
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control parameter is now g = q/ v/'N. Moreover, dual ar-
ray with couplings Y, . is randomly frustrated due to
randomness of phases x,, = ArgY, .. Critical value
gc for the Hamiltonian (6) with random matrix Y, »» will
be calculated below.

Off-set charges @, related to the “node” islands con-
tribute directly to the frustration parameter

r,= Qz +Fw(Qw = 0)- (11)

Eq. (11) is useful for derivation of the relation (13) be-
low.

To complete duality transformation, we need to iden-
tify dual partners for the superconducting density p, and
dielectric permeability € characterising electromagnetic
response of an original array. Superconducting density
is defined via the energy

B0y=" / P2 (V)?

of an inhomogeneous state, it is related to kinetic in-
ductance per square: LE = ®2/47%p,. We calculate p,
by introducing infinitesimal vector potential A modi-
fying magnetic frustration of the original array, which
transforms into modification of “charge frustration” f,
in the dual representation. Dielectric permeability € of
the original array is calculated via an energy response
to the introduction of an additional infinitesimal stray
charges Qx = 0Q and Qx = —d0Q via 2D Coulomb re-
lation d>E/d(6Q)? = [N/eC]Gxx. Variation of stray
charges transform then into a variation of “magnetic”
frustration in the dual representation. Simple calcula-
tions lead to the dual relations

E; _
Ps = N '5D11 (12)
2
-1_ T D
€ = oNELP (13)

ep is the effective dielectric permeability of dual array
and pP is its effective superconducting density, which
are defined in the insulating and superconducting states
of the dual array, correspondingly.

S-I transition point at T = 0: variational method.
Variational method for the Hamiltonian H = Hg + Hy
defined by Eq.(6) was developed in [5] for the determina-
tion of the transition point. The idea of this method (we
use it at T = 0 and for static case only) is to consider the
ground-state energy F,,, as a bilinear functional of aver-
age values ¢; = <ei¢i), ie. Evar = 27‘1,1'2 L1‘1,1‘2¢:1¢7‘2’
and to determine the condition for the operator L to ac-
quire zero mode. This calculation was performed in [5]
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for f = 0. We generalized such a calculation for the case
f= % as well; the matrix L,, ,, is presented below:

LT11‘2 = €+ (61‘11‘2 - cf_’71('3'2> ) (14)

where €; = 2FE¢ is the Coulomb energy of the small-
est (4, —) dipole residing on nearest-neighbouring sites,
and e, = (2E¢/n)log M is the Coulomb energy of a
single-charge excitation, co = 1 and ¢; = 5. Eq.(14) is
derived in the main approximation over small parame-
ter €1/ €4 ~ log™ 1 M. The result for criticial values of
q= EJ/EC reads:

(15)

1 3 1
qcziforfzo, qc=—forf:§.

8

Superconducting density p, and phase diagram with-
out off-set charges. At g < g¢. and low tempera-
tures T < Tsyup(g) the Josephson array is superconduc-
tive. Superconductive density p, coincides with Ej/N
in the absence of both thermal and quantum fluctua-
tions, T — 0 and ¢ — 0. We start from analysing
quantum corrections to p, at T = 0, making use of
the dual relation (12). The ground state of the dual
array with the Hamiltonian (6) is insulating, its di-
electric permeability ep can be expressed in terms of
the Fourrier- transform R(p,0) of the irreducible zero
(Matsubara) frequency charge charge correlation func-
tion R(r,w = 0) = [ dr((N(7)No(0))):

1 —SECR(p’ 0)
€D

(16)

Correlation function R(p,0) can be expanded in series
over “dual Josephson” part of the Hamiltonian (6), this
explanation contains even powers of ¢ = Ej / E¢ only.
We calculated R(p,0) for the f = 0 case up to the 4-th
order in q. Details of this rather tedious calculations will
be presented elsewhere [9], the result is

E
WJ [1-¢*—(ap+ a,)q4] , ap = 0.84, a, =2.42.

(17)

Ps =

Here coeflicient aj, corresponds to the contribution of
diagrams which include two couplings Y, ,, and Y, .,
with pair-wise equal coordinates r; = r4 and ro = 73,
whereas coefficient a, corresponds to “ring” diagrams
with all four different points r1,23,4 (all diagrams con-
tributing in the order ¢* contain products |Y,,»|? only).
The result (17) is reliable as long as 4-th order correction
is small compared to the 2-nd order one, i.e. ¢ < 0.4.
Eqgs. (12) and (17) determines reduction of the 7' = 0
superconducting density due to quantum fluctuations of

vortices beyond vortex-free ground-state. Upon temper-
ature increase, superconductivity is destroyed accord-
ing to Berezinsky—Kosterlitz-Thouless (BKT) mecha-
nism of vortex depairing, with transition temperature
Tekt = A%ps(T = 0). Suppression factor 49 = 0.87
was found numerically [10, 11] for classical phase transi-
tion in the Gaussian periodic XY model like the one we
study here, for f = 0. In the fully frustrated case f = 3
suppression is stronger [11, 12], A% = 0.52. Full line
in Fig.2 presents g-dependence of the superconducting
transition temperature Tg,p(q) = TAoE;/2Nep.
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Fig.2. Temperatures of various phase transitions in the
Josephson wire array. The full line with asterisks shows the
normalized metal-insulator transition temperature (right-
axis) versus ,/q = E;/Ec (top-axis) in the limit of
large ¢ and in the absense of random stray charges. All
the other lines should be referred to the bottom and left-
axes. They show the normalized superfluid density and
superconductor-normal metal transition temperature ver-
sus ¢ = E;/Ec = 4N*v/x’E;. The solid line with no
marks shows p,(g) in the absence of magnetic field includ-
ing the fourth order corrections (Eq. (17)). The dashed
line with no marks shows the same p, but includes only
the second order corrections. The solid line with crosses
shows ps(gq) in the presence of the magnetic frustration
f = 1/2. Finally, the line with diamonds represents
ps(@) in presence of strong random charge frustration.
Note that in this last situation the relevant parameter is
g = E/Ec = 4N*?v/n’E;. Dotted lines present just
extrapolations of solid lines into the ¢ range where correc-
tions to p, are not small. The circle and square marks on
the bottom axes denote the points of the zero-temperature
phase transitions for f = 0 and f = 1/2 respectively

In presence of magnetic frustration f # 0 calcula-
tions of quantum corrections to €ép up the 4-th order in
IIncema B MAIT® ToM 85

Bpim. 9—-10 2007



Superconductor-insulator duality for the array of Josephson wires 625

E; looks complicated, here we present 2-nd order results

only:
E; 112 ,
== (1-— . 1
ps =7 ( 27q) (18)

The corresponding superconducting transition tempera-
ture Tyyp = w4 1 Ej/2Nep as function of g is shown in
Fig.2 by the line with crosses.

At g > g, the ground state of the dual Hamiltonian
contains Bose-condensed vortices. Very deep inside the
dual superfluid state (¢ > g.) the corresponding “dual
superfluid density” pP(q = oo) = E; = 2Nv, cf. last
term of the Hamiltonian (6). Such a state possesses col-
lective excitation with frequency

w? = VSEC_E'J = 23/271'\/UEJ, (19)
which is a dual analog of usual Josephson plasma oscilla-
tions with much higher frequency wy = /8E;Ec > w?.
Finite-q correction to pP in the lowest order over ¢—!
is due to anharmonicity of the zero-point fluctuations
of phases ¢,; it can be calculated as p? = pP(q =
— 00){cos(ir — @r4s)) = pP(1—1//89). Note that per-
turbative corrections to p2 do not depend on density of
“dual charges” controlled by f.

According to Egs.(8) and (13), the original array is
then in the insulating ground state with inverse dielectric
permeability

“1_o11/a_3/2 [ Eg 8/ 1
g 1=21/453/ (E_c) exp{—+/8E;/Ec} (1_\/T1> )

(20)
Interaction of 2e charges in such an array is logarith-
mic, U(z) = (4N E¢/7e) log(z), the corresponding BKT
charge unbinding temperature is Tins = 0.57TNE¢/7e
[1]. Note that dielectric constant ¢ is very large in the
whole range of applicability of our theory; this is due to
our major assumption of E; > Eg. The line with as-
terisks marks on Fig.2 shows the normalized transition
temperature Tins(q)/Tins(0). At T > Tins Cooper pairs
are unbound and array possesses nonzero thermally ac-
tivated conductivity. Below Ti,s linear conductivity van-
ishes (cf. [13, 14] for similar experimental observations
in thin amorphous superconductive films).

Strong off-set charges: superconductor to “Coulomb
glass” transition at T = 0. Now we concentrate on the
case of strong random stray charges, but assume no real
magnetic field present, ¥ = 0. Then dual “Josephson”
couplings in the Hamiltonian (6) are diminished in mag-
nitudes, so the parameter which controls quantum fluc-
tuations is now

g=E%/Ec = AN®/?v/n%E;, (21)
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and strongly frustrated by random phases, thus all ef-
fects related to vortex tunnelling are suppressed. In par-
ticular, it concerns reduction of superconducting density
ps due to vortex fluctuations, given (up to the 4-th order
in E;) by

ps = % (1-4* —0.84g"). (22)
In comparison with Eq.(17), note the absence of the ring
diagram’s contribution a,q* which vanishes due to av-
eraging over random phases (other terms contain mag-
nitudes |, | only). Eq.(22) provides reasonable accu-
racy up to g =~ 0.6.

Upon sufficient increase of g the superconductive
ground state will be destroyed. In the dual represen-
tation (6) it corresponds to formation at § = g. ~ 1 of
a gauge glass state (cf. e.g. [15]) with frozen in “vor-
tex currents”, a la persistent electric currents in mag-
netically frustrated random Josephson network. Phys-
ically it means an appearance of a collective insulating
state with local lateral electric fields. At g > 1 and
T = 0 the corresponding “dual superfluid density” p?
scales as E? = 2¢/Nuv. Gauge glass state in 2D nearest-
neighbours array is unstable due to thermal fluctuations
at any nonzero temperature [16], thus at any T > 0
our array will possess small but nonvanishing conduc-
tivity. The absence of finite-T' charge unbinding tran-
sition demonstrates qualitative difference with the same
model without random off-set charges, studied above.

Conclusions. We presented exact duality transfor-
mations for the JW array, proposed as a novel model
system with superconductor-insulator QPT. Our main
results are presented by Eqs.(17), (18), (22) for the ar-
ray’s macroscopic superconducting density ps, and by
Eq.(20) for dielectric permeability € in the insulating
state. Collective vortex oscillations with N-independent
frequency (19) are predicted for the deeply insulating
state in the model without off-set charges. In the op-
posite limit of strong charge disorder w? scales with N
as N~1/4, Variational estimates for QPT locations are
presented in Eq.(15). T # 0 phase diagram is summa-
rized in Fig.2. Low-temperature measurement of kinetic
inductance seems to be the most adequate experimental
method to study QPT in JW array.
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