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A supersymmetric generalization of Wheeler—Feynman potentials is proposed.
The electrodynamics of a Maxwell supermultiplet constructed from the

world coordinates of charged particles in the superspace is analyzed.
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In the Wheeler—Feynman theory,' the electromagnetic field a u describing the inter-
action of two charges with world coordinates x*(¢) and y*(r) is constructed from the
coordinates themselves and can be written

at(x)=e f dryH (1) 8(s}), (1)

where sf=x“—y*(7) is the world interval, and 5(5%) is a é-function on a cone.

A generalization of the principle of ‘““‘action at a distance” to the superspace
ZM=(x#,0%0,), {M=(y*(7),E%(1),E,(7)) , was proposed in Ref. 2. That generaliza-
tion includes, along with the ordinary world coordinates x, and y,, their spinor Grass-
mann superpartners #* and £¢ (Ref. 3). This generalization has made it possible to
expand the concept of constructing fields from coordinates to spinor fields and to con-
struct both electromagnetic and spinor fields from the supercoordinates of neutral par-

ticles which have an anomalous magnetic moment.

In this letter we solve the problem of a supersymmetric generalization of Wheeler—
Feynman potentials." We construct a superfield Maxwell’s electrodynamics®> using ex-
clusively the world supercoordinates of the charged particles as fundamental generators
of the theory.

Following the lines of Refs. 1-5, we introduce the supersymmetric world interval
s, and the supersymmetric generalized velocities w%, £%(7), and £,(7):

s"=x"—y”—i(00"“é—§o"‘é), (2)
wh=yr—i(éorE—Eat). 3)

These quantities replace the ordinary interval s& and the ordinary velocity y*(7).

To formulate the generalization proposed here, it is convenient to use left and right
chiral bases,4
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xbt=xt+i0o"0, yl=y“+itoté,
xfb=xt—ifo"0, yhk=yr—ifotE, (4)

and corresponding left and right supersymmetric intervals N =(s1,49), s =(sk, A9y,
Their vector and spinor components are given by?

sf=x,’f—yﬁ—2i00"§=s"+iAo’"A, A%= 67— ¢,
sh=xf—ybt2itatG=st—iAa*A, A%=gi—¢2 3
Using the generalized velocities and chiral intervals in (5), we can construct invari-

ant spinor Abelian connections A *(xg, 0),A d(xL ,0):

A (xg,0)=e f dr(w,,0" A%+ 2iE ,AA)8(s7),

Ayxp,0)=—(A)*=— ef dr(w, A"~ 21§aAA)§(sL) ©)
These connections satisfy the chiral conditions and thus the constraints*

D Ag=0=DA;=F,4=0=F 3. (7)
The supersymmetric generalization of the Wheeler~Feynman electromagnetic potential

which we are seeking is thus found from the solution of the constraint F,3=0:

Ay(x,0,0)=~7 5““(D0Aa+DaA ).

Using (6), we can express this generalization in terms of the world coordinates of the
superparticies:!

A (x,0,0)=— ief dT{ @1~ €m0 ATPR) P +i[(Ag, &) — (£0,)]

1 - - . - . -
+7 AABRWY(9,0,~ 1,0 +[BA(EG,,8) + (§0,,8)BA] 97} (s2).

(8)

The choice of representations (6) and (8) for the connection A y(x,,6) automati-
cally fixes the superfield Lorentz gauge:

O*A ,(x,0,8)=0. : ©)

The allowed gauge transformations A, =A,+id, A, A, =A,+iD A, A, -A +iD A
are now characterized by a real scalar superﬁeld A(x , 0) which is llmlted by the
conditions

0OA=0, D°D,A=0, D,D*A=0. (10)

The nonzero stresses Fyy(x,6,6), which correspond to the potentials A (x, 6, 0),
are constructed from the chiral superfields W, and W, :
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i . | S i . -
WazzF#d&#a‘z:—S' D/';DBAG‘\“ ‘2" d*A ,,

N A 1 -
WGEZ o_uaaF“(X:_,gDﬂDBAa_f__z_ 0aaAm (11)

where 9%= GHag) gk Using (6), we can write these superfields in terms of the world
supercoordinates:

; . , 1. -
E+iE*AotAd, + 4—§“AAAAD

We(x,6,8)= —iej dr

i .
+w,,| 2(A0*)90,— = AA(A0 ) (9" 07— p**D)
# 2

—iAA(E(r,L)"c?"] 8(s?), (12)

We(x,0,0)=(W*)*.

It is convenient to use the superfields W and W to introduce a superfield generali-
zation of the Wheeler—Feynman electromagnetic current, by means of the equation

—4m Hx,0,0)=DW, +D ,W=id°* (DA, —D,A,). (13)

Under gauge transformations (9) we have 8 7= —i/16w[DD,DD]A =0, and the super-
current 7 is gauge-invariant. Using the explicit expressions for connections (6), we can
rewrite the right side of (13) in the simple form CI®(x,6,8), where & is a scalar
superfield of the type

cp(x,o,é)=—4ef dr[wf,‘(AaMA)vLi(‘fA)A[&—iAA(E[&)]é(sz). (14)

Using this observation and a fundamental relation for the interval in (3),
O68(s?)=—4m8Y(s*), (15)

which generalizes the Dirac identity® to the supersymmetric case, we can write Eq. (13)
as a superfield wave equation,

O®(x,0,0)=—4m 7(x,6,0), (16)
with a supersymmetric electromagnetic current 7(x, 6, 6),

H(x,0,0)= —4ef drf (Ao, A)+i(EA)AA—iAA(EA))6)(s). (17)
Equation (16) is a superfield generalization of Maxwell’s equations in the Lorentz gauge.

The physical meaning of the superfield ®(x, ,6) is the prepotential* V(x,6,6) calcu-
lated in the gauge,

- .1 .
{DD,DD}V=0=V(x,6.6)= 7 $(x,6,6), (18)
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which is a superfield generalization of the Lorentz gauge, which is fixed by the Wheeler—
Feynman representation.' The justification for this treatment of the superfield @ is that it
is related to the superfields W, and W, in (11) by

1

1 .. )
Wo==~1:DDD,®, Wi=-1

. .
T DDD @, (19)

which serve to define the prepotential.4 In the notation of Ref. 4, which we are using here,
superfield condition (18) breaks up into the component gauge conditions
OC(x)=~D(x), **xa(x)=ik%(x), 3*KX5(x)=—iN%x),
M(x)=N(x)=0, d,0*(x)=0, (20)

which are imposed on the components C, x, x, M, N, and v of the gauge superfield
V{(x, 8, 6). Conditions (20) make it possible to represent V(x, 8, #) by a component ex-
pansion

.1 ] . ]
V(x,6,8)= 7 ®(x,0,0)=C+i0"xa— 8k~ (65,8)0"

i

2

+ aabdxd—;— ééaaxﬁ% 0666D, (21)
where the vector field v#(x), the spinor fields A%(x) and Xd(x), and the auxiliary field
D(x) form a Maxwell multiplet. The representations of these fields as integrals of the
world supercoordinates are found through an expansion of prepotential ® in (14) in
powers of 6 and 6. As a result, we find the following representation for the electromag-
netic field v*(x), which generalizes Wheeler—Feynman field (1) and which is the zeroth
term in the expansion of the vector connection A ,(x, 6, é) in (8):

v, (x)=iA ,(x,0=0, é=0):efd7 Y =€ pury (£ E) P

- - . - 1 .
+[£€(80,,€) +(80,,8)£€10°+ 7 £€86y™(0,0,— 1, 1) 8(sy).  (22)

It follows from this result in an obvious way that the Lorentz condition in (20),
d,u*=0, is satisfied. For the spinor field which is the superpartner of the field
v#¥(x)=0"v"— d"v*we find

; - i " 1. -
M) =e [ dr( b= ig(E0 )"0+ 5 £6(EG,) "o~ 5 EEEHD

+)}M

~2(g0m)9,+ 5 €6 (0"~ D)) }5(s%). 3)

The representation for X* is found through complex conjugation: X *=(\%)*. For the
auxiliary field D(x) we find

D@)=e [ drty eorB-EED-EOENDAG). @4
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The fields A*(x) and X 4(x) in (23) and v* in (22), which are constructed from the
world supercoordinates, satisfy wave equations for Maxwell and Weyl fields with cur-
rents on their right sides:

Dvk(x)=—4mjP8(x), d,eh¥(x)=—4mj 1 (x), 0N (x)=—4mjVe(x),
(25)

and D(x)=—4mj*). Superfield equation (16) decomposes into these equations when we
substitute in representation (14) and a component decomposition of the supercurrent of
the form

7=—4j9+46% 0 —-40,j4V-4(60,6)j>"
—2i000,0% ) +2i006% ;) + 00600, (26)

In turn, the explicit expression for the components (26) of the current multiplet
(x,6,6) is found from integral representations (22) and (23) after we apply differential
d’Alembertian and Dirac operators to them. As a result, we find the following represen-
tation for the electromagnetic current:

- 1 .
jg):ef dTl}}ﬂ_S’qu}\))V(go.pg)a)‘—i— Z gfgg)}v(auav_ 77/“’5)

+HEE(EG,, B+ (E0,,8)EE10° | 8V (sp). @7

This representation is a supersymmetric generalization of the electromagnetic current in
the Wheeler—Feynman approach. Conservation of electromagnetic current (9] f)=0)
follows from explicit expression (27). For the spinor component of the supercurrent 7 in
(26) we find

](1)_ej dT{yu

A | - -
+ig £ 5(0”6)“65550%} 89 (s). (28)

(78, 5 6.8~ (070580,

We find the corresponding expression for ]_g) through complex conjugation:
(1)*( (1) *
Ja' )"

Expressions (22)-(28) for the fields and currents can be simplified by using the
Dirac identity (1 8(s3) = — 4 w6 (s4).

The introduction of Grassmann variables in the theory of action at a distance makes
it possible to incorporate the contribution of spin degrees of freedom of the charged
particles in the classical limit, #—>0. This effect arises even in the static approximation,
with y= §=§ = 0. In this case, the components of the electromagnetic 4-potential
v#=(uvg,v) can be written in the following form after a direct evaluation of the integrals
in (22) in the gauge 7=y,:
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e -
vo==+emEEHN(r), r=x-y,

3% -
V"—'e[—rs‘rl, I=(&0é), €&=§& . (29)

r=xg

It can be seen from (22) that we obtain a nonvanishing 3-vector potential v, in
contrast with the Wheeler—Feynman results. This vector potential is generated by the
magnetic moment 2, of the particle, which is proportional to the expectation value of the
operator representing the spin of the source particle, .

A second physical effect which stems from the introduction of Grassmann variables
is the addition of a term proportional to 6)(r) in the scalar potential vy. To clarify the
physical meaning of this term, we apply a Laplacian to the equation for vq in (29);

Avg==4nl5 5O+ )+ 5 8(r-3) | (30)

It can be seen from the expression for the charge density on the right side of (30) that
incorporating the spin of the particle leads to a “smearing” of the point charge ¢ of the
particle over a spatial region with the scale of the Compton wavelength. This effect of the
nonzero size of charged superparticles stems from the creation of electron—positron pairs
(Zitterbewegung), which does not disappear in the limit under consideration here,
k>0, since the contribution of the spin degrees of freedom of the particle does not
vanish in this limit.

As can be seen from representation (22), going beyond the scope of the static
approximation makes it possible to incorporate the contribution of the spin—orbit inter-
action and subsequent terms in the expression for the Hamiltonian of the interaction of
the charged fermions,” written as a power series in v/c.
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D] the differential operators d, D, and Oused in this paper act on the coordinates (x, 6, (9) of the “observation
point.”
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