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A theory of a diffuse domain wall is proposed. This theory agrees satisfactorily
with experimental results. © American Institute of Physics.

I. INTRODUCTION

In the course of magnetooptic observations of the motion of the wall of a magnetic
bubble (or cylindrical magnetic domain) being expanded by a pulse of a bias field,
Zimmer et al." observed a smearing of the wall. The effect has come to be known as a
“diffuse domain wall.” This phenomenon has since then been studied by many investi-
gators, in various scientific laboratories; it has been observed in magnetic films with
various properties.”~® Despite the fairly extensive experimental results which have been
found, this phenomenon has yet to be explained.

Let us review some characteristic experimental features of diffuse domain walls. In
most cases, the wall arises when there is a magnetic field in the plane of the film or when
there is a planar anisotropy. A broadening of the domain wall occurs only in regions
oriented perpendicular to this field. The broadening occurs up to a certain maximum
value; beyond this point, the wall moves with a constant effective diffuse width, in the
manner of a normal domain wall, until the end of the pulses of the bias field Hy. The
value of H, at which the diffuse wall is observed is 47rM in order of magnitude. The
time scale of the formation of a diffuse wall is several tenths of a microsecond. An
in-plane field promotes the onset of a diffuse wall, but it is apparently not a necessary
condition for the onset of a wall, since a wall was observed in Ref. 5 even in the absence
of an in-plane field or a corresponding anisotropy. In this letter we propose a theory for
diffuse domain walls which explains these experimental features and which predicts
satisfactory quantitative results.

. THEORY

For magnetic-film materials with a large quality factor, under the condition
K>2mwM?, where K is the uniaxial-anisotropy constant, and M the magnetization vector,
we can use the system of Slonczewski equations, which follow from the Landau-Lifshitz

micromagnetic equations:®®
q,=YA[f(e) = (2A/M) .. ]t al ¢, oy
¢=vHo+(2A/M)q.,/A]- aq,/A, )
fle)y=nlH, sin p—(H,+H(z)] cos ¢)+27M sin 2¢. (3)
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Here ¢(t,2) is the coordinate at the middle of the wall, at a height z at a time ¢; the Z
coordinate axis is perpendicular the plane of the film; ¢(t,2) is the azimuthal angle of the
magnetization vector M; A=(A/K)"? is the width of the wall; H(z) is the twisting
field; and H, and H, are components of the in-plane field.

A diffuse wall is observed at bias fields Hy which are much stronger than the Walker
critical field H,,= a2 wM. In this case, the spins in the wall precess at an angular velocity
on the order of yH, (Ref. 8). Taking an average of Egs. (1)—(3) over the period of these
oscillations, we find, in the corresponding approximation,

g,=aldg,, (1+a®)e,=wy—(a’+b*)20y+(2yA/M)q,, /A, 4)
where wy= yH,
a=may[H,+H(2)], b*=(ay2aM)*+(aynH /2)*. (5)

System of equations (4) has a steady-state solution in the case ¢,=®=const, which
corresponds to uniform motion of the average domain wall. In this case we find the
following expression from (4):

q21=a1+a2Hs(z)+a3Hs(z)25 (6)
where
oyt H2 + b?

2 20y 2wyl
M a?y*m? H, _ M a27271'2
294 4 2wH’ BTE2VA 8wy

M
A—- (1+a®)w—wy+

a,=A (7

Under the free boundary conditions

9.(0)=q,(h)=0, (8)
a solution of Eq. (6) is

q(z)=a2f dzlf ‘Hs(zz)dz2+a3f dzlf 'H,(z,)%dz,
0 1] 0 0

a3z
j H(2)?dz+q(0). 9)
In deriving (9) we used the equality
1 [h
ar=—asy [ H2 == a2, (10)
0

which follows from conditions (8).

It is a simple matter to work from (10) to derive an expression for the angular
precession velocity of the spins, w, and for the displacement velocity of the domain wall,
q,, in the course of an average steady-state motion of the wall:
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Approximating the twisting field by a linear function
H(z)=4mwM(2z/h—1), (13)

we find the following expression for the bending of the wall, (9):
1 47M
g(z)=W, 2x3—3x2+1—6—H;—[(2x—1)2—1]2 +g(0), (14)
where x=z/h, Aj=A/2mwM?, and
Wo=A(mah/Ag)*(H, [H,)/24. (15)

In the course of steady-state motion, the wall is thus in a bent state; the shape of the
bend is determined by (9) or (14). At H,~4 M the second term in (14) is an order of
magnitude weaker than the first, so the bending of the wall is determined by the magnetic
field H, , which is directed perpendicular to the plane of the wall. In this approximation,
the field H, does not affect the bending of the wall. The maximum bending of the wall,
determined by the field H,, is

W=q(h)=—q(0)=W,. (16)

In the absence of an in-plane field we find the following expression for the maximum
bend of a moving wall, working from (14):

W=q(h/2)—q(0)=A(mah/Ay)*(47M/H)/384. (17)

To find the time scale over which the wall acquires its steady-state shape, we need to
solve time-dependent system of equations (4). For this purpose we put Egs. (4) in the
form

9,= K°q,.+ f(2), (18)
where
a 2vA
T M 19
_alowy a’+b? 20
f(Z)—‘1+a2 Zw;", (20)

Solving Eq. (18) by separation of variables under the initial condition ¢(0,z2)=0 and
under boundary conditions (8), we find

x

q(t,z)=fot+ E [1-exp(— szit)]

n=1

2f,
hik

5 cos(k,z), (21)

where
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k,=mn/h, n=123,.., (22)

2 (h 1rr .
=3 f0f<z>cos<knz)dz, fo=3 foﬂz)dz- @

It is not difficult to see that the quantity f, is the same as the velocity of the steady-state
average motion of the wall, (12), and that the series in (21) becomes a Fourier expansion
of a steady-state bend, (8) or (14), in the limit r—oc.

It follows from (21) that the time scale (7) over which the wall reaches a steady-
state bend as in (8) is, in order of magnitude,

1 14a>2 M K V21
(24)

7-=K2k%= a 2yA 7 \why awy’

where wy=y47M.

lil. COMPARISON WITH EXPERIMENTAL RESULTS

Under the assumption that a diffuse domain wall arises in the course of the motion
of a domain wall because of the bending of the wall discussed in the preceding section of
this letter, let us compare (on the one hand) the maximum wall broadening in (14) and the
time taken to establish this broadening, (24), with (on the other) the experimental results
of Refs. 1-5. First, however, we note that the damping parameter agiven in Refs. 1, 3,
and 4 was based on ferromagnetic-resonance data. For rare-earth iron garnets, the dy-
namic damping parameter is® usually an order of magnitude larger than the value found
for a on the basis of ferromagnetic-resonance data. We will accordingly estimate con the
basis of data on the mobility of the wall given in those papers.

As a result, for the wall broadening W and the time 7 we find the following results
from Eqs. (16) and (24), using the parameters of the sample from Ref, 2: W=19 gm and
7=1.9 us (the experimental results are W=12 um and 7=0.5 us). For the parameters of
the sample from Ref. 3, with a=0.3, we find W=5.4 xm and 7=0.6 us (the experi-
mental results are 4 um and 0.4 us). For the parameters of the sample from Ref. 1, with
a=0.35, we find W=9.8 um and 7=2.1 us (the experimental results are 25 pm and
0.4 us). For the parameters of the sample from Ref. 4, with =0.5, we find W=3.5
pm and 7=0.17 us (the experimental results are 4 um and 0.15 us).

Kleparski et al.’ observed a diffuse domain wall along the entire perimeter of an
expanding magnetic bubble in the case H,=0. Using the wall mobility curve given in
Ref. 5, we find an estimate a~ 0.5 of the damping parameter. From Egs. (16) and (24) we
then find W=53 um and 7=1 us for the sample of Ref. 5 (the experimental results are
W=20 um and 7=2 us).
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