Optimized jellium model for metal clusters
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An optimized parameter-free jellium model is proposed for polyatomic clusters.
This model leads to an absolute minimum of the total energy of a system
consisting of delocalized electrons and a positive core. A double-variation method
is used to determine the optimum distribution of the charge density of the

cluster core and the electronic structure. The total energy of the cluster reaches a
minimum under the condition of local electrical neutrality. Numerical

calculations have been carried out on the electronic structure in the Hartree—Fock
approximation with various numbers of atoms. The electron system, with a

shell structure, has a strong effect on the charge distribution of the positive
background. Basic physical characteristics of the metal clusters calculated

from this model are compared with experimental data and with the results of other
calculations. © 1994 American Institute of Physics.

1. The electronic structure of atomic clusters has recently been the subject of active
research.'™ Ab initio calculations on entities of this sort are quite difficult, even if there
are only a few atoms,® because of the large number of degrees of freedom in the system.
Progress has been achieved with the help of a jellium model, which pictures a cluster as
consisting of two quasi-independent subsystems: a subsystem of delocalized valence
electrons and a subsystem of an ion core. The positive charge of the core is distributed
over the entire volume. This model substantially simplifies the problem of calculating the
structure and dynamic characteristics of clusters.>>>~!! It turns out that the results of the
calculations depend on the particular distribution of the core charge which is selected and
on the geometric parameters. The first calculations which explained the formation of a
shell structure in clusters of alkali metal atoms'™ were carried out under the assumption
that the core charge is distributed uniformly in a spherically symmetric cluster. Its radius
was determined from the interatomic distance in a solid. This is the “bulk material” (BM)
model. Attempts were subsequently made to “optimize” the distribution of the positive
jellium by varying geometric parameters,”’~! but those calculations suffer from a de-
pendence on the choice of parameters on which the optimization is based.

Our purpose in the present letter is to find the optimum distribution of the positive
core charge, p(r}), by which we mean the distribution which corresponds to an absolute
minimum of the total energy of the system. We propose a parameter-free optimized
jellium model (OJM), which is based on a self-consistent solution of a many-body prob-
lem jointly for the delocalized electrons and the positive core. On the one hand, the
many-electron wave function and the energy are functionals of the core charge distribu-
tion p(r); on the other, p(r) is a functional of the electron density, because of the Coulomb
interaction between the electrons and the positive background. A nonlinear dynamic
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interaction of the electrons with particles of the cluster core is similar to polaron effects
in a solid,'? in which a similar situation arises in a system with one electron. In the case
of metal clusters we are dealing with a many-electron system. It is thus necessary to solve
two self-consistent problems simultaneously: calculate the many-electron wave function
in an external field and calculate the external field itself. This external field is set up by
the positive background, with a distribution p(r) which is not known at the outset.

The solution method proposed here is based on a double-variation procedure. This
procedure yields a condition for an absolute minimum of the total energy of the system.
Under this condition, the density of the nonuniform charge of the OJIM core is precisely
equal to the electron density over the entire volume of the cluster, as we will show below.
This condition Ieads to a nonlinear equation for the many-electron wave function or, in
the one-particle approximation, io a system of Hartree~Fock equations. The electron
wave functions and energies and aiso the optimum charge distribution p(r) of the OJIM
jellium are thus found through a numerical solution of a system of coupled nonlinear
integrodifferential equations. The total energies which are calculated are absolute minima
among all possible distribution functions of the core density and geometric parameters of
clusters with various numbers of atoms.

We use an atomic system of units: i =|e|=m,=1.

2. According to the jellium model, the total energy of the cluster, £, is the sum of
the total energy of the system of delocalized electrons, which are moving in the core field
U(r), and the Coulomb potential energy of the distributed positive charge of the core.

The total energy of the system of electrons in the ground state is
E =(¥*H ol ¥), where ¥ is the total wave function of the electron system, which
satisfies the Pauli principle and which is normalized.

The Hamiltonian of the system of electrons in the field U(r) is

A Al
Hd=2(-—2——U<r +2— (1)

i itj ’

The potential U(r), set up by the distributed positive charge of the core, with a
density p(r), satisfies the Poisson equation. The potential energy of the positive core can
thus be expressed in terms of U(r):

_1 p(r)p(r) :
E°°‘—81-rf U(r)AU(r)dr= J J ] drdr . (2)

For an electrically neutral cluster consisting of N monovalent atoms of an alkali metal we
would have

f p(r)dr=— %f AU(r)dr=N

The condition for a minimum of the free energy of the system, F, in an equilibrium state
at absolute zero is equivalent to the requirement that the total energy of the cluster,
E,,, be at a minimum. For an electrically neutral cluster, satisfying this requirement
reduces to determining the conditions for a stationary state of the functional
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under small variations ¥ *(r) and Jp(r). Here € and A are arbitrary Lagrange multi-
pliers. The last two terms in (3) are associated with the normalization of ¥ and with
conservation of the total charge of the core. The condition which fixes the total core
charge can be omitted from functional (3), since we are calculating an absolute minimum
of the total cluster energy for arbitrary distributions of the core charge. As we will see
below, an absolute minimum of the energy is reached only in the case of electrically
neutral clusters, with the core charge equal to the total number of delocalized electrons.

We are thus required to find a solution of the system of variational equations
SG{¥*,U} SG{¥*,U}
— " 0, W =
The first of Eqgs. (4) leads to an ordinary Schrodinger equation for the total wave function
W(x) of the system of electrons: H, W (x)=E W (x), where x={r;,r;..r;..ry} is the set

of coordinates of all N electrons, and E is the total energy of the electron system, which
is identical to the Lagrange multiplier € in (3).

(4)

The second equation in (4) relates the electron density and the charge density of the
jellium in the state of an absolute minimum of the total energy:

2
f sox)| =S W(x)l,dx+fp(r)d,r)dr’:o. (5)

i |r;—r | Ir—r]|
This relation holds for an arbitrary variation of the density of the positive core charge if
the expression in parentheses is zero.

The main conclusion is thus that the “optimum” density of the positive background
is equal to the total electron density at each point in the cluster volume:

p(r)= 2 f S(r—r;)| ¥ (x)|%dx. (6)

Using (6), we can write a Schrodinger equation for the total wave function W (x) with
Hamiltonian H,, from (1):

1 | (x))2dx’ L)
_2 . - v
( 22[ Al % f |r}_ I 2 § r— ' (X) Ecl\I’(x) (7)

i

Because of the second term in (7), the equation for the total wave function is nonlinear.
A point of particular importance is that this equation is nonlinear even for a system
consisting of a single electron in the field of a positive charge. Here we are seeing a
difference between the OJM and the standard model of a “rigid” core.

3. In the case of a many-electron system, Eq. (7) cannot be solved exactly. In this
letter we use the Hartree—Fock approximation,' in which we can derive corresponding
equations for normalized one-electron wave functions ®,(r) with an energy ¢;. For the
optimized density distribution, the Hartree terms of the direct Coulomb interaction are
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cancelled exactly by terms describing the interaction with the positive charge. From the
interaction with the core we are left with only the i=j term, which corresponds to a
“self-effect” of an electron, which arises because of a redistribution of the positive
charge density. In this case the Hartree—Fock equations can be written in the form
A , o1
-5 B0~ 2 0)(x) f P NP ) sy drr = ey, ®)
j=1

where the summation is over all values of j (including j=i), and where we are using
x=(r,0).

In the Hartree—Fock approximation we thus find a system of equations for one-
particle electron wave functions which are coupled by a nonlocal exchange interaction,
which includes a self-effect.

Using (6), we can also find an expression for the total energy of the cluster in terms
of the one-particle wave functions ®,(r):
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FIG. 1. Total energy of a cluster per atom,
E/N (eV; part a), and the average radius
(r)(a.u.; part b), versus the number of atoms, N,
P2y in the Hartree—Fock approximation. 1-—For the
% “bulk material” model with a unit cell of size
r;=4 au. (sodium); 2—for the optimized jel-

14 lium model.

2
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FIG. 2. Electron density distribution p(r)/p, in the volume of the cluster for N=58 and 92, in units of the
density of the uniformly distributed core charge of the BM model (dashed lines). 1—BM model, r;=4 a.u.
(sodium); 2—OJM.

In other words, E, contains the one-particle energies ¢;, the exchange interaction (the
terms with i # j), and the electron self-effect (i=j).

4. System (8) has been solved numerically for metal clusters of 1 to 92 atoms with
an ‘“‘optimum” background charge distribution p(r). As a result, we plotted the total
energy per atom, as shown in Fig. la. Here we can clearly see some magic numbers,
which correspond to the stablest configurations of clusters with closed shells. The many-
electron “polaron” effect makes these magic numbers considerably more prominent, for
N=40 (15°1p°1d"2s°1f*2p®) and N=68 (15*1p®1d"25%1f1“2p%1g'824'%), for ex-
ample. The difference between the total energies of the clusters with an OJM core and
with a uniform background distribution under the approximation of Ref. 10,

[E SiM(N )—E g’:“(N )J/N, turns out to be approximately constant at about 0.1 eV/atom.

The average radius (r)==(®|r|®;)acquires its typical dependence on the number
of atoms, N (Fig. 1b). In contrast with the corresponding plot for the BM model, the plot
for the OJM has local minima at N=38, 20, 40, 58, and 92, i.e., for clusters whose
spherical symmetry has been confirmed experimentally and agrees with calculations on
the basis of the Nilsson spheroidal model.’ This is a result of a modulation of the positive
jellium by the electron density. As a result, the electronic configurations with closed
shells form a more compact structure. The average radius (r)opy calculated for the
optimum distribution p(r) is significantly larger than (r)gy, (for the bulk material model)
at all values of N. The effect should be a substantial increase in the static dipole polar-
izability a of a cluster upon the switch to the ““optimized”” model.

Figure 2 shows curves of the electron density p¢/(r) for the BM and OJM distribu-
tions of the core charge density. Since the condition of local electrical neutrality holds in
a “self-consistent” cluster, it becomes possible, for the first time, to speak of an internal
structure of the ion core within the framework of a jellium model. It can be seen from
these curves that the positive charge is distributed nonuniformly over volume, forming
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FIG. 3. The ionization potential IP (¢V) and the total energy per atom, £, /N (eV), of a metal cluster versus
the number of atoms, in the Hartree~Fock approximation. a—I P(N), average term; b—/P(N), spin-polarized
version; ¢—E (N)/N, average term (dashed curve) and spm -polarized version (sohd curve). Curve 1) BM
model, 7,=4 a.u. (sodium); 2) OJM; 3) Nay, expenmental 4) Ky, expenmental

regions of maxima and minima, which correspond to ion coordination spheres.

Figure 3a shows ionization potentials /P(N) calculated in the Hartree—Fock ap-
proximation for jellium models with the BM and optimized distributions of the core
density. We see that the experimental values of IP of clusters of heavier elements (Ky)
lie closer to the results of the OJM calculations than in the case of lighter atoms (
Nay). The shape of the IP(N) curve for each model reflects a transition from electronic
configurations with unfilled electron shells to filled shells, which correspond to maxuna
of the ionization potentials. These results agree with shell-structure arguments."*

The polarized-spin method is widely used in calculations on electronic configura-
tions with half-filled shells in atomic physics. It is convenient to break up each filled shell
into two spin shells, which are characterized by definite directions of the projections of
the spins of the electrons in it. These spin shells can be thought of as closed. If there is
no exchange between electrons with different spin directions, the total energy of the
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system is lowered. Figure 3b shows ionization potentials of clusters for the BM model
and the OJM as calculated in the Hartree—Fock approximation by the polarized-spin
method. We can clearly see maxima in the /Ps of configurations with half-filled shells,
which also correspond to minima of the total energy in Fig. 3c. The solid curves there are
plots of £,,(N)/N corresponding to the spin-polarized method, while the dashed curves
correspond to average terms.

A change in the distribution p(r) has a strong effect on optical characteristics of the
cluster. For example, the static dipole polarizability increases from 750 a.u. for the BM
model”!! to 1090 for the OJM. The frequency of the dipole resonance shifts from 2.67 to
2.15 eV. However, these values still differ from the experimental values* 890+ 17 a.u.
and 2.5 eV. The reason is that both of these models are limiting cases—of “rigid” and
infinitely compressible ion lattices of the cluster.

The results of this letter can be applied to entities other than clusters: to any finite
many-electron systems in which there is an interaction with a positive external back-

ground.
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