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The existence of dynamic equations is proved for supersymmetric Hamiltonian
systems. These equations lead to Hamilton’s equations of motion and

they can be treated as a square root of these equations. © 1994 American
Institute of Physics.

1. The purpose of this note is to show that Hamilton’s equations of motion, which
describe the dynamics of a supersymmetric system, result from other dynamic equations
of motion which are formulated in terms of the even Poisson—Martin bracket, but with
the help of the supercharge Q7 taken as a “Hamiltonian,” and its corresponding
Grassmann-odd derivative D is a square root of the time derivative. Since these latter
dynamic equations of motion themselves are not a consequence of the Hamilton equa-
tions, they apparently represent a more restrictive level of the description for the dynam-
ics of Hamilton’s supersymmetric systems and can be treated as a square root of the
Hamilton equations. This formulation of the dynamics shows that the supercharges have
not only a symmetry meaning but also dynamic meaning.

2. Let us assume that the Hamilton supersymmetric system has a phase superspace
with the real coordinates zM=(q%p,;6"), where q°.p, (@a=1,...,n) are even and #*
(a=1,...,m) are odd (with respect to the Grassmann grating) canonical variables. Hamil-
ton’s equations of motion for this system are usually written on the basis of the even
Poisson—Martin bracket

n m
{ABY=A| 2 (340.0, =3, dga) =i 2, 94adga|B, (1)
a=1

a=1

using the even Hamiltonian H(z) and give the evolution with the time ¢ of an arbitrary
quantity f, which depends on the variables z in the form

df
=AY, @

In definition (1) 9 and J are right and left derivatives, and the notation d,=d/dz is
introduced.

It immediately follows from (2) that the time is canonically conjugate with the
Hamiltonian H(z) in the bracket (1)

{t(z),H(2)}=1. 3)
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Since for every particular system the Hamiltonian H(z) is the definite function of the
phase coordinates zM the time ¢, in accordance with (3), must also be a definite function
of z™ in the arbitrary function £,(H), which depends on the choice of the time origin.

In the transition from the coordinates z =(q°,p, ;0 to real, canonical coordinates
M ’(z), in the bracket (1), which contain among the canonically conjugate pairs a pair
consisting of the time #(z) and the Hamiltonian H(z), it also follows from (2) that the rest
of the canonical quantities z* " would be the integrals of motion for the system being
considered: the even I(z),..., I3, 1)(2) and the odd 0!(2),...,0™(z). To avoid a misun-
derstanding, we stress that the functions z¥ ’(z) are considered as elements of the Grass-
mann algebra with the generators 6% along the ring of the Grassmann-even functions that
depend on the even variables ¢g* and p,. Note that the general mathematical scheme
allows us to introduce the terms with the odd functions of ¢* and p, into the #* expan-

sions for z¥ '(z). However, we do not consider these terms because they necessarily
include the constant Grassmann values whose physical interpretation encounters many
difficulties. In terms of the new coordinates z¥ ’(z), we can rewrite the bracket (1) as
follows:

n—1 m
{A,B}=A a,a,,—a,,a,+k2 (91,01, = 01,01, )+i2 dgadea|B. (1a)
=1 a=1

Under the condition of the problem the Hamilton system under consideration pos-
sesses supersymmetry whose generators Q “(z) satisfy the superalgebra

{0*,0P=2i6*PH, (4a)
{0*,H}=0. (4b)

A comparison with expression (1a) for the bracket reveals the relation between the su-
percharges Q“ and the canonical odd integral of motion ®¢,

Q%= \2HO". (5)

The infinitesimal canonical transformation of zM' with the generating function
A M ’) can be written with the help of the bracket in the form

8zM = (M A}

Taking into account relation (5) and the expression for the bracket (1a), we can write the
canonical transformation oft he supercharges Q“ in the form

SQ*={Q*\}=ID"\,
where the odd derivatives
D®=4,.+in%g,
are the square roots of the derivative with respect to time ¢
id,=(D%?, (6)
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and the quantities 7*=Q“/2H contained in the definition of D“ have the meaning of the
superpartners for ¢.

Using the superalgebra (4), the Jacobi identifies for the bracket (1), and the property
of the odd derivative (6) we can rewrite the Hamilton equation of motion for the phase
superspace coordinates 2

d M

% = (M H) (2a)
in the form

(D”‘)ZZMZ{{ZM,Q“},Q“}. (7)

Note that here is no summation over the index « in relations (6) and (7).

If we postulate with the help of any supercharge Q¢ and its corresponding odd
derivative D“ the equations of motion for the system in the following way

iD*M={0* M\, (8)

where the bracket is assumed to be expressed in terms of the variables M =(q",p.;6"
according to (1), then the action of the odd derivative D on Eq. (8) and using (6), (8),
and (4), we obtain the initial Hamilton equations (2a). Thus, Hamilton’s equations (2a)
follow from Egs. (8), while the inverse statement, in general, is inapplicable.

3. As an illustration of the general considerati_oni we give a particular example of
Witten’s supersymmetric mechanics' ™ 1S classical version.” o hhce phase superspace consists
of four real coordinates z* =(q,p; 01,02). In the given case, there are no even canonical
integrals of motion /, while the Hamiltonian H, the time , the supercharges Q“, and the
fermionic charge F can be written in terms of the coordinates z™ as follows:

2+ W2

H=p—§ﬂ+i0192W’(q),
7 1 g2 2, N1—1/2.9 i0'6°W(q)

t=| [2H(q,p;6",6°)—W(q')]” '“dq +—2H—+to(H), )
q0 P

Q'=po'+W(q)¢’, Q°=p&’-W(q)¢', F=i6'6".
Hamilton’s equations (2a) for every component of zM have the form
g=p, p=—-WW —iw"8'¢*>, 6'=—-w'¢>, #=w'¢", (10)

where the dot and the prime mean the derivatives with respect to ¢ and g, respectively.
The expressions for the coordinates zM in terms of ¢, H, and 7*=Q%/2H, obtained by
inverting relations (9), are

g=q,(t,H)+in' n°q,(t,H),
p=p(t,H)+in' p’p,(t,H), (11)

6°= f3(t,H) n".
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Here g1, p1, and fg are the Grassmann-even real functions of ¢ and H. Hamilton’s
equations (10) in terms of the coefficients in the %* expansions (11) for z¥ take the form

491=p1, 92=P2, P1=—W(g)W(q),
P2={q2[W(q)W"(q1) + (W' (¢)1+ W' (q)(fif3 - Fof D}, (102)
fi==W'q0fi, fi==-W(@fs, fi=W@fi, fi=W(fz
Let us consider the system of equations (8) corresponding to the supercharge 0’
iD1M={Q' M}, (8a)
In terms of the coefficients in the 7™ expansions (11) for z, this system of equations is
W(g)=f1, @:=f p1=fi, P=—FiW'(q1),
‘11:f}, 42W'(ql)=f§’ plzf%W’(QI)’ Pzzf%-

It can be easily seen that Hamilton’s equations (10a) follow from equations (12), while
the latter cannot be derived from (10a). Note also that the set of equations (8), which
correspond to different supercharges Q' and @2, are not consequences of each other in
the sense of differential equations. However, the algebraic connection between them can
be established with the help of the fermionic charge F, which transforms the super-
charges Q' and Q7 into each other

{F,0% = €*PQ”, (4¢)
{F,H}=0, (4d)

(12)

(e*P=—€P*, &'=1), by using the Jacobi identities for the superalgebra (4).

4. In summary, we have shown that the dynamics of the supersymmetric Hamilton
system can be described not only by the Hamilton equations (2a), but also by means of
Egs. (8), which can be treated as square roots of (2a). Note that the interrelation between
Egs. (2a) and (8) is analogous to that between the Yang—Mills equations and the self-
duality (or anti-self-duality) equations. Solutions of Eqs. (8) therefore resemble the self-
dual (or anti-self-dual) solutions of the Yang—Mills equations.

Note the following point. Since Hamilton’s dynamics for the supersymmetric sys-
tems, with an equal number of pairs of even and odd phase coordinates, can equivalently
be described on the basis of even and odd Poisson brackets,z’3 the square roots of Hamil-
ton’s equations for these systems can apparently be obtained on the basis of the odd
Poisson bracket, using the same odd derivatives D®. Taking into account he duality
between the even and the odd integral of motion for such systems upon changing the
bracket parity,>® we must assume in this case that the even supercharges Q®, which are
the linear combinations of the even Hamiltonian and other even integrals of motion, are
the ‘“Hamiltonians” in the dynamical square-root equations

iDaZMZ {Q_a,ZM}l ,
where {..., ...}; is the odd Poisson bracket.
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