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This letter analyzes the dynamic conductance of a quantum ballistic channel
connecting two highly conducting regions across which an alternating voltage is
applied. The frequency dependence of the admittance may be oscillatory,
because of spatial resonances of charge-density waves that propagate along the
channel. © 1994 American Institute of Physics.

Time-varying processes in the terahertz range in quantum structures have obviously
attracted increased interest in recent years.'™ To the best of our knowledge, however,
there has been no study of the dynamic conductance of quantum channels in the ballistic
regime, although there have been a fairly large number of studies of the steady-state
conductance,® the steady-state current induced by an alternating perturbation,>”° and
time-varying tunneling.'%1 In the present letter we show that resonance effects arise in
the dynamic conductance of quantum channels because of the propagation of charge-
density waves along a channel.

The dynamic conductance (or admittance) of a quantum channel is defined as the
ratio of the complex amplitude of the alternating current in the external circuit to the
amplitude of the alternating voltage. A distinctive feature of a calculation of the dynamic
conductance is that the current in the external circuit is by no means equal to the
quantum-mechanical transport current, since under time-varying conditions the transport
current depends on not only the time, but also the coordinate along the channel. As will
be shown below, the time-varying current in the external circuit is an integral function of
the transport current over the entire length of the channel.

Let us consider a quantum channel of length L which connects two highly conduct-
ing regions (electrodes), across which an alternating voltage V,cos({) is applied. We
assume that the conductance of the electrodes is so high that the characteristic frequen-
cies of electronic processes (plasma frequencies and the Maxwellian relaxation fre-
quency) in the electrodes are high in comparison with the characteristic frequencies of
electron transport in the channel. Since we are interested in fairly short channels, we also
ignore retardation effects. The necessary condition here (L <€¢/{}) holds well for ballistic
channels in the terahertz range. Under these conditions, the surfaces of the electrodes can
be assumed to be equipotentials. We describe the distribution of the alternating potential
in the channel by means of a function ¢(x), which is determined by the electrode
geometry and which we assume to be a given. We normalize the function ¢(x) in such a
way that the conditions ¢(0)=0 and ¢(L)=1 hold. The alternating potential is then

Vac(x,8) = Vid(x)cos(0t).
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As we will see below, the function ¢(x) plays an important role in the frequency depen-
dence of the admittance.

We know that the application of a periodic perturbation results in the emission and
absorption of photons £} by electrons. As a further result, side bands (quasienergies)
e+nh) (n is an integer) appear in the spectrum of electron waves. In this letter we are
concerned with the high-frequency limit AQ— eV, . In this limit, the absorption or emis-
sion of simply a single photon may prove important.!’ The current response at the fre-
quency {1 is governed by an interference of electron waves corresponding to different
bands. In the course of this interference, a charge density p(x,t) arises. This charge
density varies with the time and is nonuniform along the channel. In the case of interest
here, that of above-barrier transmission, this charge density takes the form of traveling
charge-density waves. By virtue of the continuity equation, the quantum transport current
j(x,t) also depends on the time and the coordinate along the channel. There is thus the
question of how we are to determine the alternating current in the external circuit.
Clearly, the total current is equal to the sum of the transport current and the displacement
current; specifically, this sum is constant in all cross sections between the surfaces of the
electrodes. The displacement current has two components. One of them is CXdV,/dt,
where C is the mutual capacitance of the electrodes. The other component is associated
with charges moving in the gap between the electrodes. The charge-density wave in the
channel gives rise to an alternating electric field in the surrounding volume and thus to a
displacement current. The most convenient way to calculate this component of the total
current is as dQ;/dt, where Q, is the charge induced at one of the electrodes (for
definiteness, the electrode on the left) by the charges moving in the channel. The total
current in the external circuit can thus be written

J()=j(x=00)+dQ, /dt+CXdV,/dt,

where the first term is the transport current across the boundary with the left electrode.
The charge O can be expressed in terms of p(x,t) and the Green’s function of the
Laplace equation for the potential in the volume between the electrodes. Making use of
the circumstance that p(x,t) is related to the current j(x,t) by the continuity equation, we
can then express (J; in terms of the current and the function ¢(x) introduced above. As
a result, we find the following expression for the current in the external circuit:

L
J(t)=f dxX j(x,t)Xd¢/dx+CXdV,/dt. 1)
0

To find the current in the external circuit, we need to calculate the quantum-
mechanical transport current. This current is found from the solution of the Schrodinger
equation with the time-dependent potential V,(xt). To calculate the current J(t), we
must therefore use the potential ¢(x) twice: once in the electrostatic part of the problem,
to find the displacement current, and again in the quantum-mechanical part, to find the
transport current. The Schrodinger equation generally includes, along with the alternating
potential, a static potential Vy(x). The latter can be used to model the change in the
kinetic energy of the electrons as they move out of the electrodes into the channel. The
existence of a static potential is of fundamental importance if the Fermi energy € is
smaller than max[Vy(x)]. If the condition €;>max[V(x)] holds instead, then the static
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potential is unimportant for the effects discussed in this letter. Below we write the solu-
tion for the case V=0, for an arbitrary distribution of the time-varying potential along
the channel. This solution was derived in the Born approximation. In calculating the
current we need to use two solutions: one for the waves incident on the channel from the
left electrode, and one for the waves incident from the right electrode. The first of these
solutions is

) eV, m
Yo (x,)=e ko4 2ik1 P{ ”‘+*f dx' p(x' ek k)
+

X
*e—ik+xj dxr¢(x/)ei(k+k+)x’+A+e—ik+x]e—i(w+0)'
0

eVl m

X
+ — . eik_xj dx' d(x' ei(k—k_)x'
2ik_ flz ‘ 0 ¢( )
_e—ik_xfxdxr¢(xr)ei(k+k_)x'+A_e~ikAx]e—i(w—ﬂ)t,
0

where w=e/h, k=(2me)"*h, k.=[2m(exAQ)]¥*#, and

A. dé pitkrks)x

i),
Here k. are the wave vectors of the electrons in states with quasienergies e+ #{); k. is
always real, while k_. may be either real or imaginary. The latter case corresponds to
localized states of the lower side band. The second solution, ¥.(x,t), is similar to the
first, with k replaced by —k.

Using the wave functions . and ¢ along with (1), we find the following expres-
sion for the current in the external circuit:

e? QcC —in
JO)=|—AQ)—i —|Ve "+,
h 2
where A({)) is a dimensionless admittance associated with the ballistic conductance of
the channel. This admittance can be thought of more conveniently as a function of the
dimensionless frequency v=%)/€ep:

L d¢ (1dw
A(v)= —f dy — & Jo \/_G(w Jx=yD, )
where w=¢€/€p,
2 _ 2
G(w, g)_ —_ [ (k_+_k)_ PRGSO (_kf_i)_ ek tE
kg k. k.,

* 2 ¥ _1)2
(k—:k) eitk—k2)E_ (k= *_k)_ e~i<ki+k>§]
k* k* ’
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FIG. 1. Admittance versus the normalized frequency €1/}, for three profiles of the alternating potential,
¢(x), in the absence of a static barrier in the channel region. a—Absolute value of the admittance; b—phase of
the admittance. 1) Linear potential; 2) knife-edge electrodes; 3) step potential.

kp:(szF)l/z/ﬁ.

The frequency dependence of the admittance is determined by the dimensionless param-
eter b=Lky and by the potential profile ¢(x). The case of most interest is the case
b>1. In the low-frequency region, with bv*><8, expression (2) simplifies:

L d¢ (L do by |x—y|
A(V)—fodxa Ody ECXP(I—.’Z— Ak 3)

It follows (first) that in the limit v—0 we have A—1. From (2) we thus obtain a
transition to the known expression for the static conductance 2e?/h for any profile of the
time-varying potential. Second, we see a characteristic frequency (1 in the frequency
dependence of the admittance. This characteristic frequency is determined by the condi-
tion bv/2=21r; hence

QOZZWUF/L,

where v is the electron Fermi velocity. The characteristic frequency is thus governed by
the electron transit time in the channel.

The particular frequency dependence of the admittance is governed by the potential
profile in the channel. Figure 1 shows the absolute value of the admittance and its phase
as a function of the normalized frequency 3/}, for three potential profiles ¢(x), ac-
cording to calculations from expression (3). Curve 1 was calculated for ¢(x)=x/L,
corresponding to the geometry of a plane capacitor. Curve 2 corresponds to the case of
knife-edge electrodes (the electrodes are two half-planes which lie in a common plane
and which are separated by a gap L). In this case we find

2 x
d(x)=1-— ;T—arccos Il
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Curve 3 corresponds to the potential distribution in the case of two steps at the ends of
the channel:

d(x)=[O(x)+0O(x—L)]}/2.

It can be seen from Fig. 1 that the admittance oscillates as a function of the frequency
with a characteristic period (.

The physical nature of the oscillations in the admittance corresponds to spatial
resonances of charge density waves along the length of the channel. The interference of
two electron waves exp[i(kx— wt)] from the fundamental band and a side band gives rise
to a charge density wave exp{i[(9%. —k)x— ]}, where

2
k,—k= Tm(\/e+ﬁ9— V&) ~ks/2.

A resonance occurs under the condition (k. —k)L=2mn, where n is an integer. This
condition corresponds exactly to the condition Q=n{, which, as we see from Fig. 1, is
the frequency difference between the singularities of the admittance. The oscillations in
the admittance increase in magnitude with increasing nonuniformity of the potential near
the electrodes.

Figure 2 shows a frequency characteristic of the admittance over a broad frequency
range including A {)> e for the case of a step profile of the alternating potential, with a
static potential Vj=const in the channel region. Curve 1 was calculated for ez>V,, and
curve 2 for ex<Vj. In the limit v—0 the admittance A(v) tends toward |¢o|%, where
t, is the transmission coefficient of the static barrier for the electrons. This result agrees
exactly with the Landauer formula.

In the case v<€1, we observe the oscillations described above; at v>1, they give
way to a monotonic decay of [A|=£, /€. We thus have two characteristic frequencies in
the problem: Q= and )= ex/%. The first is related to electron transit in the channel;
it characterizes the oscillations of the admittance. The second characterizes the decay of
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the admittance at high frequencies due to the decrease in the probability for transitions of
electrons into the side bands. Oscillations may occur under the condition Qy<€eg/#,

which is equivalent to the condition Lkz>1.
We wish to thank the International Science Foundation for support of this study via
Grant ML3000.

USince the admittance is determined by the current response in the limit V;—0, the condition ££23 eV holds

at any frequency.
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