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The differential magnetocapacitance of a 2D electron system in the form of a
screened strip is calculated. A magnetic field is directed normal to the

plane of the strip. The strength of this field corresponds to a nearly integer value
of the filling factor. © 1994 American Institute of Physics.

In an interesting experimental study, Takaoka et al.! showed that, at its minima, the
low-temperature magnetocapacitance of a two-dimensional (2D) electron system with a
control electrode is proportional to the perimeter of the 2D system. This result is at odds
with other calculations of the magnetocapacitance (see, for example, Refs. 2—4). Takaoka
et al.' concluded, therefore, that magnetoelectric effects require a special analysis near
minima of the magnetocapacitance. They believe that edge states may be contributing to
the total capacitance of a bounded 2D system under conditions corresponding to integer
values of the filling factor deep in the 2D system. The nature of these oscillations was not
specified in Ref. 1; it was simply stated that the length scale of their localization near the
boundary is far greater than the magnetic length.

In this letter we calculate the minimum magnetocapacitance of a 2D strip with a
control electrode, utilizing a special electrostatics which holds in magnetized 2D systems
with an integer filling factor.” The calculations confirm that the minimum capacitance is
proportional to the perimeter of the 2D system. Arguments from Ref. 5 are systematicaily
used in the literature to describe various magnetoelectric effects.®’ With the same degree
of justification as in Refs. 5-7, we can naturally apply the electrostatics of Ref. 5 to the
problem of the magnetocapacitance of 2D systems.

We consider a plane capacitor which has a large dimension along the Y axis, which
has a width 2w along the X axis, and whose plates are separated by a distance 2d. We
place the origin of coordinates at the center of the capacitor. The magnetic field is
directed along the Z axis. The system is immersed in a medium with a dielectric constant
x. The lower plate of the capacitor, which is in the z= —d plane, is a 2D-electron system
with an equilibrium electron density n,, which corresponds, at the given magnetic field
H, to the requirement that the filling factor v have an integer value:

v=mlin,=123.., [=chleH. 1)
Our task is to calculate the distribution of the additional electron density ér, along the
2D system when a potential difference V appears across the plates. The corresponding

capacitance C is given by
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C=dQ/dV, Q=ef+w5n1(s)ds. | )

In the approximation of Ref. 5, the necessary equations are {(eV<fiw,)

©1(xz2)+ @a(x2) =0, —wsxs+w, 3)
z=+d
ve " "
m((pl'F(pz) =5n1, —wsxs-+w, (4)
¢ z=—d

¢/=de;ldx, w,~=eH/m., ¢+o¢l,-_s=V,

x=*w

, 3 2e [tw Sn(s)(x—s)ds
¢1(x2)= 7f_w (=) 2+ (z+d)?’

)

2ef+w on,(s)(x—s)ds

2l B P L e

Here 6n, and dn, are the distributions of excess charge densities along the 2D system
and the control electrode, and ¢; and ¢, are corresponding potentials which arise be-
cause of the distributions dn; and dn,. Requirement (3) is the standard condition that the
control electrode be of an equipotential nature. Condition (4) from Ref. 5 determines the
specific features of the behavior of the 2D system at integer values of v. The quantity
w, is the cyclotron frequency, and m , is the effective mass of an electron.

In the limit w>I>d we find the following expressions from (3)—(5):

Sny,=0%(8ny+ 6n), PP=viidla},

) (6)
* 2 2 me _
a,=«kh"/me”, —K—(5n1+5n2) =V,
5 s how.k *WdS\/wz—s2f?6 4
N — On,= ndo,
! ? 2¢2pw?—x%*)-w X~ 0 !
(7)

+w
J (6n,— én,)ds=0.

—W

Here a; is the effective first Bohr radius.

The requirement />d, which we used in deriving Egs. (6) and (7), is not necessary;
it merely simplifies the calculations. For the parameter values from Ref. 1, it corresponds
to the limit »>1. In particular, in this case it is convenient to displace the origin of
coordinates to one end of the strip (say, to the point x= —w) and to put Eqgs. (6) and (7)
in dimensionless form:

d2
F(‘S’;l +0ny)=6én,, &=x/I,
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Sri=6n;/n,, O +ohy| =V, b +dn,| —0, (8

£=0 =

V=«kV/(2mwen.d),

on,— én,= fds \/’fénl(a)d(r
)

For the parameter values from Ref. 1 (k=12.3, m,=0.07m,, 2d=1000 A and
n,=2.8x10" cm™2) and for a magnetic field H = 10T (corresponding to ¥=1), we have
the estimates /p=a}=10"% cm, /=d, and a=1. With increasing v, the quantity I
increases as v?, while the parameter « falls off as v~ 1. In the region »>1 we thus have
[>d, as mentioned above; we also have a<%1.

a=hw/l/ve?.

Because the parameter « is a small value, we can seek a solution of (8) and (9) as
a power series in a:

on=6a+ada\V+ ..., Si,=a+adaiV+.... . (10)
1 1 1 2 2

Substituting (10) into (8) and (9), we find
2

ony=6n3, 23—55 orY=6n", (11)
260 | =V, &Y| -0,
0 =]

AR (21)_[J ds \/_Jén (o)do, (12)

2

o+ s = ol e+ 8l | =0,

0

saf+sns) | —o.

+ oo

1%

Restricting the discussion to the zeroth approximation, i.e., to Egs. (11), we find
=0 _
5”1 - E

\/_?: Kl

C0=4_7; FE (14)

exp

here C is from (2).

The results in (13) and (14) confirm the experimentally based assertion of Takaoka
et al." that excess charge localizes near the boundaries of a 2D system at an integer value
of the filling factor v. In the zeroth approximation in a, the length of this localization
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region is determined by the combination / from (6). The inequality /5[, corresponds to
the data of Ref. 1 at a qualitative level, as does the behavior /= »? in the region v>>1.
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