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The energy spectrum of an electron in a spherical potential-hump heteroinclusion
with a large effective mass is shown to be characterized by a set of
quasidiscrete levels with large values of the angular momentum /. The lifetimes
of quasistationary states in the hump increase with increasing /, i.e., with
increasing excitation of the state. Energies and lifetimes of the quasistationary
states are calculated numerically on the basis of selected parameter

values. © 1994 American Institute of Physics.

1. Quantum dots, which are usually heteroinclusions of a relatively narrow-gap
material in a relatively wide-gap semiconducting medium, have been rather fashionable
topics in recent physics research. The discontinuity in the electron band gives rise to an
energy profile which localizes the motion of an electron within the quantum dot, where its
effective mass is usually smaller than in the external medium.

In the present letter we consider a quantum entity constructed by interchanging the
properties of the heteroinclusion and the surrounding medium. In other words, we con-
sider a wide-gap inclusion in a narrow-gap medium. The original energy profile—a
“potential hump” in the words of Landau and Lifshitz—does not initially localize an
electron; it simply scatters the electron. We also assume that the electrons of the hetero-
inclusion are considerably heavier than the electrons of the narrow-gap medium. We
assume that at a certain finite value k=k, of the wave vector there is a crossing of
electron terms of the heteroinclusion, €,(k), and of the medium, €,(k):

€1(kg) = €3(ky)- 1)

[For simplicity we are assuming that the dispersion relations €, (k) are isotropic.] All
these assumptions are illustrated in Fig. 1; we will refer to our entity as a ‘“heavy
quantum dot.”

The model entity discussed below is a spherical heavy quantum dot of radius r,. We
assume that there is a sharp heterojunction at r=r, with a discontinuity U, in the
electron band (Fig. 1). Shown for comparison in Fig. 1, by the dashed lines, is the
potential profile of an ordinary quantum dot (spherical) with an inner narrow-gap mate-
rial. Since the analysis is being carried out in terms of a model, we restrict the discussion
to the single-band approximation:

2 k2 ﬁ2 k2

€(k)=Ug+ 57— e(k)=5—

>
2my, 2m, my,-~>m;, (2)
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£ FIG. 1. Dispersion (k) and potential profiles U(r). 1)
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with k3=(2Uy/A%)m m, [(m,—m,).

2. Writing the electron wave function ¢Ar) in the form

d/(r)=ylm(0’¢)Xl(r’6)/r’ (3)
we find the following equations'? for X:
- A+ 1)
Xl+—ﬁT E—UO—W X;=0, r<ry, 4)

2m RA(i+1
X+ 2(5 ({+1)

? ——zm—zrz—)X1=0, r>ry, (5)

where Y,,,(0,9) is the spherical harmonic, / is the azimuthal quantum number (angular
momentum) of the electron, the prime means the derivative with respect to r, and
€>0 is the energy of the electron. This energy has a continuous spectrum of values. It
can be seen from (4) and (5) that under the condition

I(1+1)>2Ur /% (m; ' —m] 1) (6)
the effective potential profile in which the electron is moving acquires an “inner” poten-
tial well (Fig. 1), in which the electron is quasilocalized.

The exact function X,(r,€) must satisfy standard conditions at r=0 and r=0o, as
well as the conditions

X(rg—0)=X(ry+0); milX'(r0—0)= ;:;X'(rOJrO). 7
The function we are seeking is of the form

Xi(r)=pirjpir), r<rg, (8)

Xi(r)=par[ B (p2r)+ vih (por)], r>ro, ©)
where
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FIG. 2. Energies of the quasidiscrete levels,
€/, versus the angular momentum ! for the
two values s= 1,2 and for the two sets of param-
eters (A and B) given in the text proper. Solid
s curves—Accurate numerical calculation;
points—results of the first iteration.

2m1 12 2m2€ 172
=g (e=Ud| , p2=\—Z7| >

ji(x) is the spherical Bessel function of the first kind, hgl’z)(x) are spherical Bessel
functions of the third kind,® and B,, and v, are arbitrary constants. The condition for the
existence of a quasidiscrete level'” is that there be no outgoing wave at r—, i.e., the
condition y,=0. From (7) we then find

p2 B (paro) _ py iipare)  (my'—my
my h{V(pare)  my ji(p1ro) ro

(10)

Equation (10) has only complex roots €;,. We are interested in only those roots which lie
in the lower half-plane and which have small imaginary components. These roots lie near
zeros of the Bessel function: J,4 10(p17rg) =0, i.e.,

2

5§S)=U0+ 2m1r3(0-§i)1/2)2’ (11)
where s=1 corresponds to smallest zero of the function o=t 1+12(0), s=2 corre-
sponds to the next zero, etc. Approximation (11) is satisfactory under the condition
Im, /m,>1/2. Figure 2 shows approximate values of the real components €*) found
from (10) with the help of (11) as a zeroth approximation. They are plotted as a function
of 1. Also shown here are exact values of the real components €* found through direct
calculation from (10). We used the following two sets of parameter values:

A) my;=0.041my, my=5m,, Uy=001 eV,
B) my=0.047Tmy, m;=4m,, U,=0.16 eV

(m is the mass of a free electron). The radius of the inclusion is chosen to be the same:
ro=75 A. Along with the “ground” quasidiscrete level s=1, a “first excited level” s =2
has been constructed in each case. For large values of [ (>5), the zeroth approximation in
(11) works well enough if we use as 05?1 1» the asymptotic values of the zeros calculated
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FIG. 3. Reciprocal of twice the
lifetime, 1/(274%), versus the angu-
lar momentum / for the same states
(s=1,2) and for the same sets of
parameter values (A and B) as in
Fig. 2.

from the standard formulas.® Figure 3 shows the reciprocal of twice the electron lifetime
in the quasidiscrete level, 1/(27), versus the angular momentum [ for the same sets of
parameter values, A and B, and for the values s=1,2. Here we used the formula

oy "

m— glme, . ( )
Shown along with the results of the accurate calculations are the results of the first
iteration. It can be seen from Fig. 3 that at large values of / we have a behavior
7~ exp(al). The constant « is slightly different for the two sets of parameter values
used in the calculations: ap>ap. For s=1 and s=2, however, these constants are
approximately the same, according to Fig. 3. The state lifetimes 751) are roughly 10>
times the lifetime 742, so the ground states are much stabler than the first excited states.

It can also be seen from Fig. 3 that the results calculated by the iterative procedure
are noticeably different from the exact results, although they do contain all the qualitative
aspects of the behavior. With decreasing radius of the heavy quantum dot, r(, the ener-
gies e}” increase as r ? at large values of /, while the lifetimes of the quasistationary
states, 73°), fall off as rj.

At sufficiently large values of I and rg (as can be seen from Fig. 3), the lifetimes
r}’) in the heavy quantum dot are greater than plausible values of the momentum and
energy relaxation times of an electron in a semiconductor. In other words, such states
become essentially indistinguishable from “stationary” states. (Since the spectrum is
discrete, most transitions involving the emission or absorption of phonons inside the
heavy quantum dot are forbidden.) These states are similar to the stationary states dis-
cussed in Ref. 4. Those other states arise in thin quantum barriers with a large electron
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mass at large values of the longitudinal wave vector. In “heavy” quantum wires of the
same nature, there can be both stationary states (analogous to those studied in Ref. 4) and
quasistationary states, like those discussed above.

For which heteropairs could the model adopted above be successfully realized? This
model is based on the assumption that the discontinuity (U,) of the electron bands is
comparatively small, that the wave vector k is comparatively small, and that the ratio of
effective masses m, /m, is comparatively large. If we adhere to the standard Kane models
of the spectrum, we would be interested in heteropairs with a large difference between
energy gaps: €,1> €,,. A large part of the change in the gap, €4 — €, , should occur at
the discontinuity in the valence band. In particular, this condition does not hold in such
standard isomorphic heteropairs as Al,Ga, _,As/GaAs and In,Ga, _,As/In,Al; _ As [here
we have y =y(x) from the condition for an isomorphic case], in which a large part of the
discontinuity lies in the electron bands. The condition which we need holds in the iso-
morphic heteropair’ Ing s3Gag 47As/InP, but the mass ratio m, /m,=2 is not large enough.
Better combinations of parameter values are found in heterojunctions which include
wide-gap I —VI semiconductors. In the pseudomorphic heteropair CdS/Ge, for example,
which was studied in Ref. 6, we have Uy=0.01 eV and m, /m,=35, as in parameter set A
discussed above. The parameters in set B are reproduced approximately in the pseudo-
morphic pair CdS/GaSb. We might also mention the pairs CdSe/GaSb, CdSe/InSb, etc.
(see the parameter values of these pairs in Refs. 6 and 7).

Another group of entities to which the arguments above apply (at a qualitative level)
are insulating precipitates in semiconductors (or gaseous or vacuum voids in semicon-
ductors). The sizes of these inclusions span a very broad range (including nanometer
values). In this case we would need a difference on the order of 3—4 eV between the
electron affinities (in the case of Si/Si0,, for example, this difference is® ~3.2 eV). This
requirement rules out the use of the single-band or Kane analysis, and it shows that we
can speak in only qualitative terms.

A trapping of electrons by high-lying, quasidiscrete, slowly decaying levels of a
heavy quantum dot can have a strong influence on high-field (hot) electron transport in
the material of a matrix if the concentration of these heavy dots is sufficiently high, and
the trapped electrons are taken out of play completely (as in the case of conventional
electron traps). At the same time, the transient trapping and return processes would be
completely different here and would be described by short times.

Since our analysis is only at a model level, we have not included the image potential
in the Hamiltonian. The contribution of image forces to the level shift is (according to the
estimates of Ref. 9) small for the parameter values adopted here.

1L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory [in Russian] (Nauka, Mos-
cow, 1989) (previous editions of this book have been published in English translation by Pergamon, New
York).

2A. 1. Baz’ et al., Scattering, Reactions, and Decays in Nonrelativistic Quantum Mechanics [in Russian]
(Nauka, Moscow, 1966).

3Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ed. by M.
Abramowitz and I. A. Stegun (Dover, New York, 1964).

47. S. Gribnikov and O E. Raichev, Zh. Eksp. Teor. Fiz. 96, 996 (1989) [Sov. Phys. JETP 69(3), 564 (1989)].

3J. R. Waldrop et al., J. Appl. Phys. 69, 372 (1991).

438 JETP Lett., Vol. 60, No. 6, 25 Sept. 1994 Z. S. Gribnikov and A. N. Korshak 438



®A. D. Katnani and G. Margaritondo, Phys. Rev. B 28, 1944 (1983).

"W. Pollard, J. Appl. Phys. 69, 3154 (1991).

8S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
°S. I Pokutnyi and N. A. Efremov, Phys. Status Solidi B 165, 109 (1991).

Translated by D. Parsons

439 JETP Lett,, Vol. 60, No. 6, 25 Sept. 1994 Z. S. Gribnikov and A. N. Korshak 439





