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An analytic description is offered for a traveling periodic structure of small-scale
vortices in the strong-dissipation limit of a nonlocal Josephson electro-
dynamics. © 1994 American Institute of Physics.

Theoretical interest has recently been focused on the study of moving Josephson
vortex structures with a length scale shorter than the London depth, in which case it
becomes necessary to use a nonlocal Josephson electrodynamics!~ (see also Refs. 4-7
for the case of superconducting thin films). In contrast with a local Josephson electrody-
namics based on the sine-Gordon equation, in a nonlocal electrodynamics there is no
common path for seeking possible nonlinear solutions. Accordingly, only a few solutions
describing moving small-scale vortex structures have been derived so far. A first exact
solution in the dissipation-free limit, describing a traveling 47 kink, was derived in Refs.
3 and 8. An exact solution for a traveling kink in the strong-dissipation limit was derived
in Ref. 9. Finally, solutions describing spatially periodic, dissipationless, traveling vortex
structures were found in Ref. 10. In the limit of a large distance between the vortices
making up these structures, those solutions transform into a traveling 47 kink.

In this letter we describe a new traveling periodic structure of Josephson vortices in
the strong-dissipation case. In the limit of a large distance between individual vortices,
this structure becomes the kink of Ref. 9. At the same time, the solution given below
makes it possible to examine the transition to a periodic, static, small-scale structure with
a magnetic field as in Ref. 10.

The small-scale vortex structure of interest in this letter is described by the solution
of the equation

+o dz' de(z',t)
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where ¢ is the phase difference between the Cooper pairs on the different sides of the
Josephson junction, w; is the Josephson frequency, B corresponds to a description of
ordinary dissipation, l=)\(3)()\i +22)71, A, and A_ are the London depths on the two
sides of the junction, \3=N?(\,+\_+2d), \; is the Josephson length, 2d is the width
of the junction, and i = j/j . is the dimensionless current density, which is assumed to be
distributed uniformly over the contact (cf. Refs. 9 and 11). This equation corresponds to
the strong-dissipation limit of a nonlocal Josephson electrodynamics in the asymptotic
limit of a small-scale vortex structure with a spatial scale smaller than the London depths.

We should refine the terminology used in this letter. A “small-scale structure” is one
whose length scale is smaller than the London depth. In particular, the state discussed
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below, in which the magnetic field vector lies in the plane of the Josephson junction, is a
traveling mixed state with a periodic structure of period (cf. Ref. 10)

b
2mw(N+A_+2d)H

where H is the magnetic field averaged along the contact. Such a period is evidently
smaller than the London depth if the magnetic field strength is below the lower critical
field but close to it (cf. Ref. 10).

According to Refs. 2, 3, and 6-9, Eq. (1) arises specifically when the length scale of
the vortex structures is short in comparison with the London depths. This circumstance is
the sole distinction between the model of this paper and the customary model. The
transition to ordinary local Josephson electrodynamics is made with the help of not
asymptotic equation (1) but a nonlocal equation for the phase difference between the
Cooper pairs. That equation was found in Ref. 1 (see also Refs. 2 and 3). Two asymptotic
limits of this equation are Eq. (1) (the Peierls equation) and the sine-Gordon equation,
which is the foundation of local Josephson electrodynamics.

The periodic structure we are assuming here is described by

tan[(z+vt)/2L]

tanh( a/2) @)

¢(z,t)= 60+ 7+ 2arctan

To explain the onset of this solution we note that we have

l:f+°° dz' oe(z',t) I sin[(z+vt)/L]

T)-wz'—z 097’ ZZcos[(z+vt)/L]—cosha’

B 0(,0 Bu sinha

w at Jz.L cosha—cos[(z+vt)/L]’

L cost9sinhasin[(z+vt)/L]+ 6l cosh sinh?a

Sme= cosha—cos[(z+uvt)/L] Sing) cosha cosha—cos[(z+ve)/L]]

It is easy to see that by substituting these expressions into Eq. (1) we find the following
relations, which determine € and «a:

sinfcosha=i, cosfsinha=1/L. 3)
We also find that the velocity v of the moving vortex structure is given by
=(wLi/B)tanha. 4
It is not difficult to see that we have
2 2 2712 2
cos? 6= ! i2+l—2~ +l—2 - = i2+l——1 5
4 L L 2 L? ’
1 12 2 21172 12
sinh?a= (z +L2 ) +I7 + 2+I—7—l}, (6)
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In the limit i =0, in which we have v =0 and #=0 according to (5) and (7), solution (2)
becomes the static periodic solution of Ref. 10. In the other limit L — o, the periodic
structure of Josephson vortices in (2) degenerates into the traveling kink of Ref. 9.

The magnetic field inside the junction is described by (cf. Ref. 9)
Hy(z,t)=—H+6H (z+vt), 8)

where the average field is given by the usual expression

$o

H= Lo+ +2d)° ©)

and the oscillatory part is

SH,(z+vt)= % 1| 2{ coshar— cos
y(z+vt)= m a—In) 2{ cosha—cos—
$o < 1 .. n(ztu)
———— > e~ — 10
ETY TGS bt (10)

Here ¢=mhc/|e|=2.05X10"7 Oe-cm? is the quantum of magnetic flux. Relation (9)
shows that the traveling periodic Josephson structure is a small-scale structure for mag-
netic fields below the lower critical field. The magnetic field in superconductors is de-
scribed by Eq. (3.5) of Ref. 10, in which z should be replaced by z+v¢, and in which
expression (6) of the present paper should be used for a.

Finally, the electric potential at the junction is

h de hu sinha

2le] 3t 2[e[L cosl(z+vt)/L]— cosha

fiv z+uvut
—ka
2|e|L 1+k§,1 2e” cos( k 2 )

(11)

In particular, the average electric potential over a period is related to the dimensionless
current density i by

g ﬁw2 [
2|€|B

In the limits of low and high values of i, the average potential is a linear function of the
current density. At low currents, the resistance depends on the length scale L, i.e., on the
average magnetic field. At high currents it does not depend on the magnetic field. All
these circumstances distinguish the small-scale structure under consideration here in a
qualitative way from the usual structure (cf. Ref. 9).
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+ —
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(z+l7 1) + 13 iz—p—IH . (12)
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We wish to stress that in the case i=1 Eq. (12) of the present letter yields a finite
value for the potential, in contrast with the case in Ref. 9. The singular current—voltage
characteristic of Ref. 9 [see Eq. (31) of that paper] follows from expression (12) of the
present letter in the limit L >/ and under the condition

0>1-¢€*>(I/L)2.
The right side of this inequality corresponds to the elimination of the singularity.

In summary, an analytic solution has been derived for the fundamental equation of a
nonlocal Josephson electrodynamics in the strong-dissipation limit. This solution de-
scribes a traveling chain of periodic small-scale vortices.

I am indebted to A. Gurevich, who furnished me a reprint of his article.” This study
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