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The transfer of coherence of states is important to nonlinear saturation effects.

Incorporating the transfer of coherence may lead to not only substantial

changes in nonlinear interference effects but also changes in level splitting.
© 1994 American Institute of Physics.

Radiative (spontaneous) cascades between excited atomic states are well known.
They can play an extremely important role in many problems, including problems in
saturation spectroscopy. In general, one speaks in terms of spontaneous transitions of
particles when the result of the transition is a change in the numbers of particles in the
combining levels, m and n. For example, it is because of cascade transitions that the first
Einstein coefficient A, appears in the factor (I',,—~A,,,+ T ,)/I',, in the saturation pa-
rameter (I',, and I', are the decay rates of levels m and n), and the change in the
population of the lower level, n, due to the external field is proportional to the factor
1—-A,,,/T,, (Refs. 1 and 2, for example).

Important to several phenomena are not only “cascades of particles” but also “cas-
cades of coherence,” i.e., a transfer to a lower level of a coherence between magnetic
sublevels which exists in the upper state. This is the situation in optical orientation,’ the
Hanle effect,*”® nonlinear Faraday rotation,’ and the polarization of cascade
fluorescence.’ To the best of our knowledge, a cascade of coherence has not been con-
sidered in discussions of nonlinear phenomena in probe-field spectroscopy. Our purpose
in this letter is to analyze possible effects of this sort.

We consider the simple case of a transition between levels m and n with total
angular momenta J,,=J,= 1. A strong, resonant monochromatic field, linearly polarized
along the z axis, causes transitions with AM =0 (the solid arrows in Fig. 1; the transition
with M =0 is forbidden). We assume that the probe field E,, is linearly polarized and is
perpendicular to the strong field E. The probe field induces transitions with AM==*1
(the wavy arrows in Fig. 1, shown for AM =1). It is easy to see that in both states, m and
n, the fields E and E,, induce a correlation (a coherence) between magnetic sublevels.
This correlation is described by the density-matrix elements p, (MM ') and
pa(M,M ’); it is represented by the arcing arrows in Fig. 1. Formally, a cascade of
coherence is manifested by the onset of a coherence in the lower state, #, at a rate given,
in general, by (see, for example, Ref. 1, § 2, Ref. 2):
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FIG. 1.
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Here (...|...) are Clebsch—Gordan coefficients, and o=0,%1. In the particular case
J.=J,=1, the coherences p,(0,—1) and p,(1,0) (Fig. 1) induce p,(1,0) and
pn(0,— 1), and the proportionality factors in Eq. (1) turn out to be equal to 4,,,/2. A
spontaneous transition of coherence is depicted by the two dashed arrows in Fig. 1.

In the relaxation-constant model, the system of equations for the density-matrix
elements pm(M,M'), p,,(M,M'), and p,,,,,(M,M') is?

(F - iQu)pmn( 1,0)— lGlpn( 110) = lGiLO[pn(O’O) - pm( 1’1)]’

2
_iG;‘pmn(l’O) +(T,—i€e)p,(1,0)= _iGiLOan(Ll)-i’ %Amnpm(oa— 1); @
(F—iQ“)pm,,(O,-— 1)+iG——1pm(Os_ 1)=icg—l[pn(_ 1,-1)- pm(0,0)],
. . . 3
G 1pma(0= 1)+ (L= i)p(0,= )= iGH_1ppn(— 1, 1); ©

Qy=0,~ Wpy, =0~ 0y, €=Q,-Q,
4
G1=-G_,;=dEy2\6k, Gi=G4_,=—dE ,/2\/6h. “

Here ,,, is the Borovskii frequency, w and w, are the frequencies of the strong and
probe fields, E is the z component of the strong field, E, is the circular component of
the probe field, I" is the polarization relaxation constant, and d is the reduced dipole
matrix element for the m —n transition.

On the right sides of Egs. (2) and (3) are the populations of the sublevels,
Pm(M,M) and p,(M,M), and the polarizations p,,,(M,M) formed by the strong field.
Since the equations for these quantities and the corresponding solutions are well known
(Refs. 1 and 2, for example), we will not reproduce them here. In the second equation of
system (2), the term on the right side with A, describes the cascade of coherence in
which we are interested in this letter. Equations with the other circular component of the
probe field are similar in form and need not be written out.

According to qualitative considerations regarding the manifestation of a cascade of
coherence, system of equations (3) is independent, and its solution enters the right side of
system (2). Using the solutions of Eqs. (2) and (3), we can write the following expression
for the work performed by the probe field,
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+1Go =i (T, —ie) ]G, +GiGE_ GG,
r-iq,
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The terms in curly brackets on the first and second lines are standard terms for the
absorption (or intensification) spectrum of the probe field in three-level systems. Serving
as these triplets of levels in our case are jM=m—1, mO,n—1 and m1, n0, nl, as dis-
cussed previously. The difference from the expressions derived in the model of nonde-
generate states'” is basically that here two of the three levels in each triplet are magnetic
sublevels of the same state. The third term in (5) is due to a cascade of coherence; it has
some unusual properties. We first note the product of different MM ' components of a
perturbation, instead of the standard square moduli. Admittedly, by virtue of (4) we have

Glﬂ)*Gﬁ‘—lGlelz - IGfolzlGﬂz,

but this simplification arises because of the particular properties of the J,,=J,=1 tran-
sition. The combinations of matrix elements of the field perturbation written above em-
phasize the interference nature of the effects which stem from a cascade of coherence:
The component G4, performs work on the polarization induced by the other component,
GH_,. ‘

The spectral properties of the “cascade term” (its resonances) are governed by its
denominator, which is the product of the denominators of the first two terms. The work
performed by the probe field, P, , can behave in various ways as a function of its
frequency w,,, depending on the relations among relaxation constants, on the values of
the static magnetic field, on the orientations of the wave vectors, on the role played by the
Doppler effect, and on other circumstances (the Doppler frequency shift leads to the
replacements (1, — € ,—k,-v, Q= —k-v). We will not discuss that question in this
letter; we will simply point out that the integral absorption (integrated over w,) due to
the cascade of coherence is zero. In this regard, the effect is similar to nonlinear inter-
ference effects.*®~1° Let us take a closer look at this similarity.

According to our theory,"*! nonlinear effects of probe-field spectroscopy arise for

three fundamental reasons: a field-induced splitting of levels, a field-induced change in
populations, and nonlinear interference effects. This classification is based on general
properties of systems of equations like (2) or (3): A splitting of levels is determined by
the determinant of the matrix of the system of equations. The change in populations

483 JETP Lett., Vol. 60, No. 6, 25 Sept. 1994 S. G. Rautian 483



appears on the right side of the equation for the polarization of an allowed transition. The
nonlinear interference effects arise from the right side of the equation for the polarization
of a forbidden transition. From this standpoint, the cascade term in (5) is a typical
nonlinear interference effect [see system (2)]. There is a distinction from other nonlinear
interference effects: The latter are caused by the polarization of an optically allowed
adjacent transition induced by the strong field [the terms with p,,(—1,—1) and
Pnm(1,1) in (5)], while the cascade nonlinear interference effect is generated by a cascade
of coherence on a forbidden transition.

In order of magnitude, the cascade nonlinear interference effect in expression (5)
differs from the first two terms by a factor 4,,, /T, , which may be small, but it may also
be on the order of one.

In a sense, the case J,,=J,= 1, with orthogonal polarizations E and E > 18 simplis-
tic. Manifestations of a cascade of coherence also exist at other values of J,, and J, and
for other field polarizations. In addition to giving rise to a nonlinear interference effect, a
cascade of coherence can influence the splitting of levels. In the case J,,=J,=1/2, with
orthogonal linear polarizations of the fields E and E,, for example, the off-diagonal
elements of the density matrix for forbidden and allowed transitions are related by a
fourth-order system of equations. There is no cascade nonlinear interference effect in this
case, but the cascade of coherence does make a contribution to the determinant of the
system. It turns out to be

(F=iQ )T —i(e= QYT ,,—ie)(T,—i€)+2(T—ie)(T,+T,—An/3-2i€)|G]2,
(6)

where the term A,,,/3 reflects the role played by the cascade of coherence between the
magnetic sublevels M = *1/2.

In general, a cascade of coherence also makes contributions to the determinant of the
corresponding system of equations (i.e., to the splitting of levels) and to the formation of
cascade nonlinear interference effects.

We recall in conclusion that the discussion above applies to a coherence on an
optically forbidden transition (a correlation between magnetic sublevels of one stationary
state). There is the possibility in principle of a corresponding cascade of coherence
between levels for which a dipole transition is allowed. The equation for the density-

matrix element p,,'(M,M') is (we are omitting field-perturbation terms)

d [ 13
$+I‘,,,,r)p,,,,'(M,M )= ,/A,,l,,A,,]',,’M%’ pnln;(Ml’Ml)
1Mo
><<J,,M10|J,,1M1)<J,,rM’1a|J,,;M;>
Xexp[_i(wnln—wn;n')t]- (7)
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