Relaxation oscillations of solitons
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The relaxation of a perturbed (amplified) optical soliton is analyzed. A nonlinear
interference of the soliton and a radiation field leads to oscillations of the
soliton amplitude which are damped in a power-law fashion. A new effect is
observed: a mutual attraction of solitons as a result of their interaction

with a nonsoliton part. © 1994 American Institute of Physics.

1. In several types of long, fiber-optic communications links currently under devel-
opment, the bits of information are solitons. Optical solitons can be described well by the
nonlinear Schrodinger equation’”

iE,+E, ,+2|E|?E=0. (1)

Equation (1) is written in dimensionless variables in a coordinate system moving at the
group velocity. Compensation for linear damping is provided by amplifiers (Refs. 3 and
4, for example), whose effect is essentially a simple multiplication of the input signal by
a gain coefficient . For example, the shape of an isolated soliton,’
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can be assumed to be unaffected by passage through an amplifier (z=0), while the
amplitude of the soliton becomes
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Here 7 lies in the interval 1=y=>1.5. At large values of y, new solitons are created.® If
damping is ignored, then the behavior of the electromagnetic field after the amplifier is
governed by Eq. (1) under initial condition (3). The amplifier disrupts the relationship
between the width and the amplitude of the soliton. As a result, the soliton relaxes to new,
matched values of the width and amplitude:

E-0=E0(2’)"‘1)‘ (4)
As was pointed out in Ref. 6, the relaxation to the new state is oscillatory; the amplitude
of the oscillations falls off slowly at large values of z.

In the present letter we examine these oscillations and the nonlinear interaction of
the relaxing solitons. As we will show below, the basic reason for the relaxation oscilla-
tions is a nonlinear interference of a soliton with the radiation field. The relaxation
process is fundamentally nonadiabatic, and the frequency of the oscillations differs from
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that found by variational methods.” The most important effect from our standpoint is the
decrease in the distance between solitons due to their interaction with the radiation field,
which is not exponentially smail.

2. The solution of the Cauchy problem for Eq. (1) reduces® to the solution of the
direct and inverse scattering problems for a linear operator:

. .
— =3 +E)y, (5)

where

1 0 [0 E*
3=\ -1 =g o)

Initial condition (4) differs from soliton solution (2), which is a nonreflecting potential
E, in that it contains a continuous-spectrum component in addition to points of a discrete
spectrum, Ag=iEy(y—1/2). The scattering-matrix coefficients a(\) and b(\) for spec-
tral problem (5) are®

)\_iEo/Z_i’)/EO R

. A
= m a(\), b(A)=isin WY/COSh(——), (6)
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where the function

[T(—=iNEy+1/2))?
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is analytic and has no zeros in the upper \ half-plane.

In the absence of a soliton, the nonsoliton part asymptotically (as z— ) spreads out
in a dispersive fashion:®
1 2
E(z,t)= . f(&exp i E+za(§)ln z

+0(z ), (7)

where

t
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and |f(£)| is related to the coefficient b(\) by

1
OP=~ i1~ 5o ®)

The asymptotic wave function corresponding to (7), which is analytic in the upper half-
plane of the spectral parameter A (ImA>0), is, according to Refs. 9 and 11,

= exp[i(At+2\22)03], 9)

where @ is a 2X2 matrix with the components
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<D11=exp[ —i J’::—(_f—) dg}, (10)
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®12=5(:)\£i—;=5exp[ —ifig—(_g—; dg}, (12)
& ,,=exp| —i f i:‘—(_% dg} : (13)

Equations (9)—(13) are valid far from the resonance A = £:
IN—€|>|E(t,2)|~Eoz™ .

The addition of a discrete spectrum at the point A =\, with a given continuous spectrum
reduces to the replacement!>!3

O —-Pd=yxd,
No— o
ANy
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and the vector |n) is specified by means of a constant complex vector [n;):

|n>= l//(z’tyx())ln())'
The field E(z,t) is expressed in terms of the component P, :

E(2,0)=E(z,1) = 2(Ng=No) P2y . (15)

Assuming a vector

where y=1-— P. Here the projection operator P (P>=P) is defined by

(14)

el
|”0>=(e—iy) and Ag={+in,

and using (9)—(13), we find from (15)
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Here
0=27n(t+4{z)+2y .
p=—20+4(7* - —27,
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The asymptotic solution in (16) refines the result of Ref. 10, which was from an analysis
of conservation laws. It is important to note that the factors ®,(£) and A(£) cannot be
found by this approach. Although corresponding calculations were carried out in Ref. 11,
some terms on the same order of magnitude (~z~ ") were discarded from the result. As
we will see below, those terms have an important physical meaning.

3. For initial conditions (3), which are symmetric with respect to ¢, the solution must

be even with respect to t. We thus have y”= {=0. The quantity E(z,?) and the phase
®,(¢) are even functions of ¢, while A(€) is odd. The function a(£) in (16) is deter-
mined by (6) and (8), and we have 5=E(I" —1/2).

Solution (16) is the asymptotic form of the Cauchy problem at large z, determined
within a constant v and a constant overall phase [which has been omitted from (16)].
This solution is the result of a nonlinear superposition of a soliton and radiation. The
interaction between these two components leads to oscillations of the soliton amplitude,?
which relax to the equilibrium value E0=E0(2F— 1). The oscillation frequency
O=E 3— a(0)/z asymptotically approaches the soliton rotation frequency, while the os-
cillation amplitude falls off as z~ 2. This interference is a very nonlinear effect: The
amplitude of the solution reaches a maximum when the soliton and the radiation back-
ground have opposite phases.

4. We consider two relaxing solitons ({,,=0) separated by a distance T (TE,
>1). Clearly, the interaction due to the overlap of the solitons is exponentially small.
The main effect arises from the interaction of the soliton and the nonsoliton part radiated
by the other soliton (in this case, the interaction of the waves radiated by the relaxing
solitons can be ignored; it arises in the next order of an asymptotic expansion in
2712, As a result, the solitons move toward each other: The phases change. The shifts of
the centers of the solitons can be found simply by using solution (16) after we set

y”'—‘ — T in it. Equating the argument of the hyperbolic cosine to zero, we find the
following equation for the coordinate of the center of the soliton, #(z):
(> H(2)\ a(§)d¢
t(z)=T- —ijIgn( &+ —47) m— (17)

Differentiating this relation with respect to z, we find an expression for the “velocity” of
the center of the soliton at an accuracy sufficient for our purposes:
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If the radiation is to the left of the soliton (T>0), the soliton velocity v is negative: The
two relaxing solitons move toward each other.

In the case #T> 1, we can approximate ¢ on the right side of (19) by 7. As a result,
the total shift of the soliton can be found through a simple integration:

= a(§)
At=— Omdg. (19)

For initial condition (3), the function a(£) is even. In this case the integral can be
evaluated explicitly:

(20)

At= logli(in)| = szl ( Co) )
= 27084 UnI= F o T8 Ry - )
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VA similar interference occurs for a soliton against a constant background™ Eg=A jexp(—2il4o/%2).
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