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A relation is derived for the critical conductivity exponents ¢ and g on the basis
of a scaling hypothesis for critical fluctuations in the theory of second-

order phase transitions and also on the basis of an analogy between percolation-
theory problems and second-order phase transitions. This relation is

t+q=vd— B. In the 2D case, this relation yields the exact value q,=1,=91/72.
A violation of this relation for critical percolation of dimensionality d=6 is
discussed. © 1994 American Institute of Physics.

The effective conductivity of randomly inhomogeneous two-phase media near the
percolation threshold behaves in a critical fashion:'?

g.~o,7 for >0, a,~0, 777 for <0, (1)

where ¢, and o, are the conductivities of the phases (o, /01<€1), 7=(p—p.)/p. is the
distance from the percolation threshold p., and ¢t and ¢ are critical conductivity
exponents—universal constants which depend on only the dimensionality of the problem.

At one time, a major effort was undertaken to relate the ““dynamic’ exponents ¢ and
q with the “geometric” ones, which characterize the divergence of the correlation length
near p.— v, the mean number of sites in a finite cluster (S— ), etc. For example,

Stauffer’ (see also Ref. 4) has collected expressions derived by various investigators for
the critical exponents ¢ and g. For ¢, these expressions are 1+8, (d—1)v,
1+{d-2)v, 1+2B, (5d—6v)/4, and [(3d—4)v—B]/2. For q they are 2v—f and
v— /2. None of these expressions is satisfactory. It is shown below that considerations
based on a scaling hypothesis lead to a relationship between the geometric exponents and
the sum t+gq. In the 2D case, this relation yields the exact value t,=¢,.

This derivation is based on (a) assumptions regarding the validity of a scaling
hypothesis for critical fluctuations in the theory of second-order phase transitions>® and
(b) on an analogy between percolation-theory problems and the problem of a second-
order phase transition,!'>’

According to (a) (see, for example, Ref. 6), the magnetization m near the point of
the phase transition, T, is given by

m=¢ 7w (hE M), @)

where £~ 77 is a correlation length, 7~T~—T,, h is the external field (a magnetic field
in the case at hand), w. are functions of dimensionality zero (Ref. 6, Ch. II, §3), and
d, and d,, are critical exponents:
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d,=(d-2+7)/2, dy=(d+2—7)/2. 3

In a region in which the phase transition is smeared, which exists only in the case
h#0, the argument of the functions w. reaches a value on the order of one. We denote
the value of  at which this event occurs by A, which is called the “smearing region” in
percolation theory. In the smearing region (this is a smearing of the phase transition) we
thus have |7|~A; using é~| 7|77, we find

A~h 1/vd &, (4)
Hence the correlation length in this region is
£e=§(| 7/~ 8)~h T )

According to Ref. 5, on the other hand, the correlation length in the smearing region
is

E~h~", u=2/(d+2- 7). (6)
We find, as we should,
2 1

I i %)

A corresponding situation (the equality w=1/d,) should prevail in percolation
theory. Here the ratio of the conductivities of the phases, h= 0,/ <1, plays the role of
a magnetic field.”? In the limit 7—O0, but with & # 0, the quantities o,(p<<p.) and
pp>p)=1/o.(p>p.) no longer go off toward infinity. In the smearing region,
o.(]7=A) has a finite value.

An analog of scaling function (2) for o, is'*

O'EN(0"1’(7'2)1/(t+q)‘1’(h§(t+q)/”). (8)

As in the theory of second-order phase transitions, we have &~ 7|~ (the critical expo-
nents of course take on other numerical values.). Consequently (on the one hand), we find
an expression for the smearing region, h£¢*9/"~1, from (8):

A=pVi+q) 9)
In other words, the correlation length in the smearing region is
E=E(T=A)~ A" V=pVHD, (10)
On the other hand, as before [see (6) and (7))}, we have
£ ~hH=pm W dr2=) 11)
and thus
v 2

t+q=s+2—7]' (12)

Using the known relations between critical exponents, we can express the critical expo-

nent 7 in terms of the familiar critical exponent 3, which characterizes the density of a
critical cluster: p=28/v—(d—2). We finally find
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t+g=dv—B. (13)

The combination dv— 8 is well known in percolation theory: dv— B=drv, where
dp is the fractal dimensionality of the percolation cluster. The simultaneous use of the
hypotheses of the scaling of the critical fluctuations in the theory of second-order phase
transitions and the analogy between percolation-theory problems and the problem of a
second-order phase transition thus leads to an equation which relates the “kinetic” criti-
cal exponents—the critical conductivity exponents ¢ and g—to the fractal dimensionality
of a percolation cluster, i.c., the geometric critical exponents.

In the 2D case we have'® t,=g¢, (the subscript specifies the dimensionality of the
problem); from (13) we find

B
t2=Q2=V2“i‘- (14)

This expression is the same as that derived for ¢, in Refs. 9 and 10. The values of v, and
B, are known quite exactly: v,=4/3, B,=15/36. We thus find the following result for the
critical conductivity exponents in the 2D case:

t,=q,=%=1.263(8). (15)

Numerically, relation (15) agrees well with values in the literature (see, for example, Ref.
12; the critical exponent ¢ is denoted by w in Table IIT). Relation (12) holds exactly in the
d=1 case, for which we know (see, for example, Ref. 13) the exact values
vi=1, ;=0,¢q,=1, and also ¢;=0.

Despite the exact agreement of relation (13) in the 1D case and the good numerical
agreement in d=2 and 3 for the critical dimensionality in percolation, d =d = 6, relation
(13) is contradictory. It is generally believed (Ref. 13, for example) that we have
ve=1/2, t¢=3, and qs=0. In order to satisfy (13) with t, =3 and v,=1/2, we would
have to have g5 = — 1. Consequently, relation (13) is not satisfied in d=6 ; therefore (if
we assume q¢=0), there is a violation of the scaling hypothesis for critical fluctuations
in percolation theory, at least in d=6 .

On the other hand, calculations based on probability-theory considerations also yield
ge =~ 1. The result t* =1+ »(d—2) was derived on the basis of these considerations
in Ref. 7. In the case d=d =6, that relation leads to the exact wvalue
tf =t¢=1+(6—2)/2=3. Corresponding considerations'* for g yield g*=1—v(d-2);
in the case d=d_.=6, this relation yields g = 1(6—2)/2=—1, i.e., gf # q¢ . We note
that the percolation threshold is zero in d= 6. Consequently, the introduction of a critical
exponent ¢ to describe the behavior of the system to the left of the percolation threshold
is problematic in this case.
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