Exact values of the conductivity exponents in the 2D case

A. A. Snarskii

Kiev Polytechnical Institute, 252056 Kiev, Ukraine

(Submitted 4 August 1994)

Pis'ma Zh. Eksp. Teor. Fiz. 60, No. 7, 518-521 (10 October 1994)

A relation is derived for the critical conductivity exponents t and q on the basis of a scaling hypothesis for critical fluctuations in the theory of second-order phase transitions and also on the basis of an analogy between percolation-theory problems and second-order phase transitions. This relation is $t+q=\nu d-\beta$. In the 2D case, this relation yields the exact value $q_2=t_2=91/72$. A violation of this relation for critical percolation of dimensionality d=6 is discussed. © 1994 American Institute of Physics.

The effective conductivity of randomly inhomogeneous two-phase media near the percolation threshold behaves in a critical fashion:^{1,2}

$$\sigma_e \approx \sigma_1 \tau' \text{ for } \tau > 0, \quad \sigma_e \approx \sigma_2 |\tau|^{-q} \text{ for } \tau < 0,$$
 (1)

where σ_1 and σ_2 are the conductivities of the phases $(\sigma_2/\sigma_1 \ll 1)$, $\tau = (p - p_c)/p_c$ is the distance from the percolation threshold p_c , and t and q are critical conductivity exponents—universal constants which depend on only the dimensionality of the problem.

At one time, a major effort was undertaken to relate the "dynamic" exponents t and q with the "geometric" ones, which characterize the divergence of the correlation length near $p_c - \nu$, the mean number of sites in a finite cluster $(S - \gamma)$, etc. For example, Stauffer³ (see also Ref. 4) has collected expressions derived by various investigators for the critical exponents t and q. For t, these expressions are $1+\beta$, $(d-1)\nu$, $1+(d-2)\nu$, $1+2\beta$, $(5d-6\nu)/4$, and $[(3d-4)\nu-\beta]/2$. For q they are $2\nu-\beta$ and $\nu-\beta/2$. None of these expressions is satisfactory. It is shown below that considerations based on a scaling hypothesis lead to a relationship between the geometric exponents and the sum t+q. In the 2D case, this relation yields the exact value $t_z=q_2$.

This derivation is based on (a) assumptions regarding the validity of a scaling hypothesis for critical fluctuations in the theory of second-order phase transitions^{5,6} and (b) on an analogy between percolation-theory problems and the problem of a second-order phase transition.^{1,2,7}

According to (a) (see, for example, Ref. 6), the magnetization m near the point of the phase transition, T_c , is given by

$$m = \xi^{-d/\sigma} w_+(h \xi^{-d_h}), \tag{2}$$

where $\xi \sim \tau^{-\nu}$ is a correlation length, $\tau \sim T - T_c$, h is the external field (a magnetic field in the case at hand), w_{\pm} are functions of dimensionality zero (Ref. 6, Ch. II, §3), and d_{σ} and d_h are critical exponents:

$$d_{\sigma} = (d-2+\eta)/2, \quad d_{h} = (d+2-\eta)/2.$$
 (3)

In a region in which the phase transition is smeared, which exists only in the case $h \neq 0$, the argument of the functions w_{\pm} reaches a value on the order of one. We denote the value of τ at which this event occurs by Δ , which is called the "smearing region" in percolation theory. In the smearing region (this is a smearing of the phase transition) we thus have $|\tau| \approx \Delta$; using $\xi \sim |\tau|^{-\nu}$, we find

$$\Delta \sim h^{1/\nu d_h}.\tag{4}$$

Hence the correlation length in this region is

$$\xi_c = \xi(|\tau| \approx \Delta) \sim h^{-1/d_h}. \tag{5}$$

According to Ref. 5, on the other hand, the correlation length in the smearing region is

$$\xi_c \sim h^{-\mu}, \quad \mu = 2/(d+2-\eta).$$
 (6)

We find, as we should,

$$\mu = \frac{2}{d+2-\eta} = \frac{1}{d_h} \,. \tag{7}$$

A corresponding situation (the equality $\mu=1/d_h$) should prevail in percolation theory. Here the ratio of the conductivities of the phases, $h=\sigma_2/\sigma_1\ll 1$, plays the role of a magnetic field.^{1,2} In the limit $\tau\to 0$, but with $h\neq 0$, the quantities $\sigma_e(p< p_c)$ and $\rho_e(p>p_c)\equiv 1/\sigma_e(p>p_c)$ no longer go off toward infinity. In the smearing region, $\sigma_e(|\tau|\approx \Delta)$ has a finite value.

An analog of scaling function (2) for σ_e is 1,2

$$\sigma_e \approx (\sigma_1^q \sigma_2^t)^{1/(t+q)} \Psi(h \xi^{(t+q)/\nu}). \tag{8}$$

As in the theory of second-order phase transitions, we have $\xi \sim |\tau|^{-\nu}$ (the critical exponents of course take on other numerical values.). Consequently (on the one hand), we find an expression for the smearing region, $h\xi^{(t+q)/\nu} \sim 1$, from (8):

$$\Delta \approx h^{1/(t+q)}.\tag{9}$$

In other words, the correlation length in the smearing region is

$$\xi_c = \xi(|\tau| \approx \Delta) \sim \Delta^{-\nu} \approx h^{-\nu/(t+q)}. \tag{10}$$

On the other hand, as before [see (6) and (7)], we have

$$\xi_c \sim h^{-\mu} = h^{-2/(d+2-\eta)},$$
 (11)

and thus

$$\frac{\nu}{t+q} = \frac{2}{s+2-\eta} \,. \tag{12}$$

Using the known relations between critical exponents, we can express the critical exponent η in terms of the familiar critical exponent β , which characterizes the density of a critical cluster: $\eta = 2\beta/\nu - (d-2)$. We finally find

532

$$t + q = d\nu - \beta. \tag{13}$$

The combination $d\nu - \beta$ is well known in percolation theory: $d\nu - \beta = d_F \nu$, where $d_{\rm F}$ is the fractal dimensionality of the percolation cluster. The simultaneous use of the hypotheses of the scaling of the critical fluctuations in the theory of second-order phase transitions and the analogy between percolation-theory problems and the problem of a second-order phase transition thus leads to an equation which relates the "kinetic" critical exponents—the critical conductivity exponents t and q—to the fractal dimensionality of a percolation cluster, i.e., the geometric critical exponents.

In the 2D case we have $t_2 = q_2$ (the subscript specifies the dimensionality of the problem); from (13) we find

$$t_2 = q_2 = \nu_2 - \frac{\beta_2}{2} \ . \tag{14}$$

This expression is the same as that derived for q_2 in Refs. 9 and 10. The values of ν_2 and β_2 are known quite exactly: $\nu_2 = 4/3$, $\beta_2 = 5/36$. We thus find the following result for the critical conductivity exponents in the 2D case:

$$t_2 = q_2 = \frac{91}{72} = 1.263(8). \tag{15}$$

Numerically, relation (15) agrees well with values in the literature (see, for example, Ref. 12; the critical exponent t is denoted by μ in Table III). Relation (12) holds exactly in the d=1 case, for which we know (see, for example, Ref. 13) the exact values $\nu_1 = 1$, $\beta_1 = 0$, $q_1 = 1$, and also $t_1 = 0$.

Despite the exact agreement of relation (13) in the 1D case and the good numerical agreement in d=2 and 3 for the critical dimensionality in percolation, $d=d_c=6$, relation (13) is contradictory. It is generally believed (Ref. 13, for example) that we have $\nu_6 = 1/2$, $t_6 = 3$, and $q_6 = 0$. In order to satisfy (13) with $t_6 = 3$ and $\nu_6 = 1/2$, we would have to have $q_6 = -1$. Consequently, relation (13) is not satisfied in d = 6; therefore (if we assume $q_6=0$), there is a violation of the scaling hypothesis for critical fluctuations in percolation theory, at least in d=6.

On the other hand, calculations based on probability-theory considerations also yield $q_6^* = -1$. The result $t^* = 1 + \nu(d-2)$ was derived on the basis of these considerations in Ref. 7. In the case $d=d_c=6$, that relation leads to the exact value $t_6^* = t_6 = 1 + (6-2)/2 = 3$. Corresponding considerations¹⁴ for q yield $q^* = 1 - \nu(d-2)$; in the case $d = d_c = 6$, this relation yields $q_6^* = 1(6-2)/2 = -1$, i.e., $q_6^* \neq q_6$. We note that the percolation threshold is zero in d=6. Consequently, the introduction of a critical exponent q to describe the behavior of the system to the left of the percolation threshold is problematic in this case.

¹A. L. Efros and B. I. Shklovskii, Phys. Status Solidi (b) 76, 475 (1976).

²J. P. Straley, J. Phys. C **9**, 783 (1976).

³D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).

⁴M. Sahimi, J. Phys. C 17, L355 (1984).

⁵A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Pergamon, Oxford, 1979);

L. D. L andau and I. M. Lifshitz, Statistical Physics (Pergamon, New York, 1980). ⁶S. Ma, Critical Phenomena (Benjamin, New York, 1976).

- ⁷B. I. Shklovskiĭ and A. L. Éfros, Electronic Properties of Doped Semiconductors (Springer-Verlag, New York, 1984).
- ⁸J. P. Straley, Phys. Rev. B 15, 5733 (1977).
- ⁹ J. Kertesz, J. Phys. A 16, L471 (1983).
- ¹⁰ M. Sahimi, The Mathematics and Physics of Disordered Media (Lectures in Mathematics) (1983), 1035,3146.
- ¹¹ M. P. den Nijs, J. Phys. A 12, 1857 (1979).
- ¹² M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).
- ¹³ T. Ohsuki and T. Keyes, J. Phys. A 17, L559 (1984).
- ¹⁴D. C. Wright et al., Phys. Rev. B 33, 396 (1986).

Translated by D. Parsons