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A generalized formulation of the principle of critical-point universality for binary
mixtures is proposed. Just as for one-component fluids, the critical behavior

of binary mixtures is determined by two scaling fields: a strong ordering field
conjugate to the order parameter and a weak field. Both scaling fields are

linear combinations of three field variables which are related to the temperature
and the chemical potentials of the two components with coefficients that

vary along the critical line. © 1994 American Institute of Physics.

Binary mixtures exibit numerous phase diagrams.! One of them, shown in Fig. 1, is
of a special interest, because in this case the line of vapor—liquid critical points, starting
at the critical point CP; of the solvent, transforms smoothly into a line of consolute
points (liquid-liquid critical points) which terminate at the critical end point CEP,. At
CEP, the two critical liquid phases and a noncritical vapor phase coexist. How can the
gradual transformation of the near-critical physical properties of a highly compressible
system near the vapor--liquid critical point to those of an almost incompressible system
near the consolute point be described? The approach presented here is based on the
principle of critical-point universality and provides a joint description of these two types
of critical phenomena.

The principle of critical-point universality implies that the thermodynamic behavior
of near-critical one-component fluids and of “incompressible” binary mixtures near the
consolute (liquid—liquid) critical point is characterized by two relevant scaling fields, a
strong ordering field associated with the order-parameter fluctuations, and a weak
temperature-like field associated with energy fluctuations. We denote these fields as &,
and h,. According to Pokrovskii,2 we have

hlz(g‘gc)_'_a(T_Tc)s (1)
hy=(T—-T.)+b(g—8.)- (2

Here g is the chemical potential (molar Gibbs free energy) for one-component fluids or
&= u= uy— pq, the difference between the chemical potentials of the two components,
for “incompressible” binary mixtures. T is the temperature, @ and b are system-
dependent coefficients, and the subscript ¢ indicates values at the critical point. Mixing of
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L4 LLY \ FIG. 1. Phase diagram of a methane-hexane mixture. CP, is the
\ critical point of hexane and CP, the critical point of methane;
CEP [,‘P, CEP, is the critical end point on the liquid-liquid critical line, and
1

CEP, the critical end point on the vapor-liquid critical line; LV

represents the liquid-vapor critical line; LL denotes the critical

locus of the consolute points (liquid—liquid equilibrium); LLV in-

dicates the line of the three-phase equilibrium (two liquid phases

and a vapor phase coexist) which terminates at the critical end
T points.

field variables to account for asymmetry between the two phases does not affect the
asymptotic critical behavior of one-component fluids and of “incompressible” liquid
mixtures. Such mixing leads to corrections to the asymptotic behavior (for example, a
“singular diameter” of the coexisting curve).’

In this paper we show that in binary solutions the mixing of field variables leads to
more significant circumstances which change the asymptotic critical behavior in some
cases. According to the isomorphism hypothesis,** a small impurity (dilute solutions near
the vapor-liquid critical point) and a small compressibility of liquid mixtures near con-
solute points can be incorporated in the definitions of #; and h, by introducing “hidden
fields” which are conjugate to the “hidden densities,” specifically, the concentration of a
solute in the former case and the total density in the latter case. The field conjugate to the
concentration is u and the field conjugate to the density is u; (chemical potential of the
solvent).>® Thus the critical parameters in (1) and (2) appear to be functions of u for the
vapor-liquid critical point of a dilute solution and of u, for the consolute point of weakly
compressible liquids. How can liquid—vapor critical phenomena and liquid—liquid critical
phenomena be incorporated into a general unified picture?

To extend the principle of critical-point universality to the general case we assume
that the thermodynamic behavior of mixtures is still characterized by two scaling fields
h, and h,. However, following Saam,’ the scaling fields are now linear combinations of
three physical variables AT=T~T_, Apu;=p—pq., and Au=pu—pu

h1=a1A,u1+a2AT+a3A/.L, (3)
hy=b;AT+b,Au,+bsApu. 4

It should be noted that all system-dependent parameters in these expressions, namely the
coefficients a; and b;, as well as the critical parameters T, u,., and u,, depend para-
metrically on the position on the critical line. We emphasize again that the coefficients a;
and b; are now system-dependent functions of the position on the critical line and may
vanish at certain points.

In binary mixtures the density of the relevant thermodynamic potential, the pressure
P=—-Q/V, is a function of three variables, namely, the temperature 7, the chemical
potential u,, and the chemical potential difference u=p,—u,:

dP=pSdT+ pdu,+ prdpu, )
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where p,=px is the partial density of the solute, p is the total molar density, and S is the
molar entropy. As usual, P can be separated into a singular part and a regular part:®

P:Px(h1’h2)+Pr(T5/‘l’luu’)a (6)

where the regular part is an analytic function of the three field variables T, u,, and u. The
dimensionless singular part of the pressure, P,=P /p{”’ RT{?, has the same universal
form as for a one-component fluid (p{*’ and T are the critical density and the critical
temperature of the pure solvent, and R is the molar gas constant) and it satisfies asymp-

totically a scaling equation of the form®
Py(hy,ho)=h3"“f(h/RSTY), . )
where a, 3, and vy are the critical exponents.

The three physical densities Ap=p—p,, Ap,=p,—p,., and As=s—s_ can be ex-
pressed as linear combinations of two densities ¢; and ¢, which are conjugate to 4, and
hy:

Ap=pRT a1+ b)), 8)
Ap,=p"RTO (a3, +b39,), ©)
As=p"RT M (arp,+b,¢,). (10)

On the path &, =0, these densities behave as <p1°<h§ and @,xh}~*. We can now define the
universal susceptibilities; specifically, the “strong” susceptibility x; and the “weak”
susceptibility y,:

e, g gy w
X1=(W) =h2 yf (z)a Xzz('éh_) =h2 ¥(z), (11)
1 By 2 hy

where

V(2)=(1-a)¥(2)=(B+ Y2y’ (2), PW2)=2-a)f(2)=(B+y)zf'(2).

Strictly speaking, there is an additional universal susceptibility, namely, the cross suscep-
tibility x1,=x12=(9@1/0h;),,=(d¢,/h1),,. However, in zero field #;=0 and in ~,>0
(one-phase region) x;, vanishes.

In practice, these universal susceptibilities cannot be measured, but measurable ther-
modynamic properties can easily be expressed in terms of x; and x, by using the standard
thermodynamic transformations. For example, the expressions for the isothermal com-
pressibility and for the osmotic compressibility in the one-phase region above the critical
point, x;,=0, have the forms

(6_x) =RT(0)[(03_01X)2X1+(b3‘b2x)2X2]+(a_x) (12)
O p 1 ‘ oMl pr
(8_;)) _ Lizxixz+Lixi+Lox, (ﬁ_p)’ 13)
oP), . 1+Lo[(a3—ax)*x;+(b3—byx)*x,] | 9P x|

where
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(0)

L0=RT(0) .I.)_.c..._
‘P

-1
, L1=RTOL(byaz—a,b3)?,
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1/adp\”
bz"p—c‘(g;) (b3—b,x)
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1 2

L1=RT§°)[al—p—

c

k4

2
L,=RTY

Here (9x/dp)p r and (dp/dx)p r are the regular parts of (9x/du)p r and (dp/x)p 1,
respectively. The main feature of the proposed approach is that the coefficients in Egs. (3)
and (4) vanish at certain specific points along the critical line. Writing the fields 4, and 4,
in the form

hy=a[p1—p ()] +alT—T(w)], hy=by[T—T ()] +by[ g1 — w1 ()],

(14)
we obtain the following expressions for the coefficients a5 and bj:
dlu'lc ch d#’lc ch
=—|ay —+a, — =—|b, —+b; —|.
as gy Y] b b, e 01 (15)

Using the thermodynamic relation (5) and Egs. (15), we can write the combinations
(a3—a;x) and (b;—b,x) as follows:

dx dx a, dT.
as—a | x=—a, —.d—/_[,_K’ b3_b2x=—b2 dll, K+ b2 a_l_bl E;L_, (16)
c [
where
K= 1 dP, dP\¢ dT, 17
" pRT,| dx oT dx (17)
hy=0
and
1 ((9P)c —S ar (18)
Pc oT hl=0 ¢ al‘

Here (aP/&T)f,l=0 is the critical value of this derivative taken along the coexistence

curve, and S is the critical value of the molar entropy. Thus, the coefficient ratios as/a,)
and (bs/b,) take the form

% _rr. ™ k. (19)
a d,u'c

b, dx dT.(a, b,

R s i 2

Assuming that (du./dx)=RT . (x)/x(1—x) on the critical line, we obtain
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g—3=x—x(1—x)K, 21

(22)

Equations (21) and (22) describe the variation of these coefficients along the critical line,
including the singular points.

a) For the one-component limits (x=0 and x=1) we have

RT.a;—1 and a3°€b3O<x-—>{ 1

Therefore, at ;=0 and h}>x(1—x) far away from the critical point we have

(ﬁ{) Oc(a_x)' «x(1—x), (a_;;) o« x x<hy Y. (23)
Il pr VOB py IP)r,
Close to the critical point [A5<x(1—-x)] we have

ox —y ap a

2w (3], e

b) The critical azeotropic mixture (K=0) is
x2%hy %, hi<x(1-x)
3, e (2, {15
— xy;%hy 7, — o o as -
apP 't ou P (0“) , hy®x(1—x)
P.T
(c) The extremum in the critical temperature (dT./dx=0) is

03_b3_ 1 dPC

L1,=0, Ly/L,=(bya,)?

and the isothermal compressibility behaves as

ap X1%hy Y, hI®x(1-x)
Enx const, hl<x(1-x). (26)

d) The consolute point in the “incompressible” limit

dx

RTCa3—>l and al,b2°< 1—( & [—iF _—>0,

Ly,—0, L,/L,= (b3/a3)2,

(ax) Y (0'0) (ap>r 0 27)
—_ oy, o , e x| — —0.
(9/.1. P.T X ? oP Tx or T,x
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We conclude that the proposed generalization of the scaling fields in the form of
Egs. (3) and (4) describes crossover behavior of the thermodynamic properties of near-
critical binary mixtures when the critical line gradually transforms from the vapor—liquid
critical locus in highly compressible fluids to the liquid—liquid critical line in almost
incompressible liquid mixtures. Because of the crossover behavior of the relevant coef-
ficients, given by Eqs. (21) and (22), the physical fields in expressions (3) and (4) change
their roles: Au plays the role of the hidden field in dilute solutions and it plays the role
of the ordering field in ‘“‘incompressible” liquid mixtures, while the Ay, field does the
same in the opposite cases. The thermodynamic properties exhibit crossover behavior,
depending on the position of the critical point in the critical locus. Further experimental
tests of the predicted behavior would be very useful.
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