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The existence of an acoustic mode in electron systems with a fermion condensate
is predicted. The resistance and thermal emf of such systems at temperatures
T=T, are discussed. The behavior of these coefficients is quite different from that
predicted by ordinary Fermi-liquid theory. © 1994 American Institute of
Physics.

The strongly correlated Fermi liquid is currently the subject of extremely active
research in many-body theory. It was recently found'~ that at T=0 there can be a phase
transition involving a restructuring of function ng(p), the momentum distribution of the
quasiparticle. According to Landau’s theory,” before the point of the transition this dis-
tribution function remains the same as in a Fermi gas: np(p)= 6(pr—p), where pr is the
Fermi momentum, and p= p%/3772. The transition occurs when the effective repulsion in
the particle—hole channel reaches a threshold above which the necessary condition for
stability is violated, and an energy benefit is realized upon a certain change in ng(p) .
The minimum of the energy functional Ey[n(p)] is thus displaced inward from a corner
point of the [#] functional space. It has been suggested® that new stationary points of this
functional at =0 be sought by working from the equation for the minimum, which is as
follows for an isotropic system:

SEo[n(p)] _ < 1)
5n(p) =M Pz\p\Pf,

where u is the chemical potential of the system. Outside this region, whose boundaries
are determined from the equation itself and arise because n(p) must be positive and must
not exceed one anywhere, the old distribution n, and the new one n, are the same. That
this restructuring is a phase transition was demonstrated by a different approach by
Volovik,® on the basis of a calculation of the topological charge of the Fermi system
which he constructed before and after the point of the transition.

According to Ref. 5, the left side of (1) is the energy of a quasiparticle. If a solution
of (1) exists, it must therefore describe a phase transition, in the course of which the
quasiparticle system (according to the Landau—Luttinger theorem, the number of quasi-
particles is equal to the number of particles’) decays into two subsystems. One of the two
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has no special properties, while the other contains quasiparticles of the same energy
e(p) = p. Their group velocity is de(p)/dp=0. As a result, a peak ~p.8(s— ) arises
in the density of states of the system, p(e). This peak is analogous to that which has been
observed in liquid He* below the \-point, which stems from a condensation of bosons
with a zero momentum and an energy £(p=0)= . On the basis of this analogy, this
subsystem was called a “fermion condensate” in Ref. 1.

The wave function corresponding to distribution (1) is multiply degenerate. This
degeneracy is lifted when many-particle correlations, primarily pairing, are taken into
account. As usual, a gap A forms in the spectrum of one-particle excitations, but this gap,
like the superfluid transition temperature 7., does not contain the standard BCS small
factor [Agcs~exp(—1/A)], and it is a linear function of the pairing constant A (Ref. 1).
The theoretical ratio 7yeo=2A(T=0)/T, is considerably larger than 7gcg=3.52 (Refs.
2—4). A similar difference is observed experimentally for high-T. superconductors:
Texp Teaches values of 6-8 (Refs. 8 and 9). Furthermore, the experimental one-particle
spectrum of one of these superconductors, Ba,Sr,CaCu,0g, 5 with T,=85 K, as con-
structed in Ref. 10 on the basis of measurements of photoemission electron spectra, has
a plateau which occupies up to 20% of the Brillouin zone. It lies (within the experimental
errors) directly on the Fermi surface. Similar results were found in Ref. 11 for
YBa,Cu;04 ¢ and YBa,Cu,Oyg. If their superconducting properties are indeed determined
by a fermion condensate, as suggested in Refs. 3 and 4, then the effect of this condensate
should of course also be manifested at T>>T ., until temperature effects erase traces of the
plateau in the £(p) spectrum.

In this letter we examine the low-temperature kinetics of an electron system with a
fermion condensate. We find that at T=T_ it is totally unlike an ordinary one-component
Fermi liquid, being more reminiscent of an electron—ion plasma, except that the density
of the heavy component—the condensate—is not imposed from the outside but is itself
found from Egq. (1).

Let us find the spectrum of collective excitations in the simple model of a homoge-
neous and isotropic system in which the condensate is in the region p;<p<py, outside
the old Fermi surface, where the quasiparticles have a finite effective mass M *. A similar
model of a doubly connected Fermi surface [although with an ordinary Fermi filling,
n(p)=1] was analyzed in Ref. 12 in order to determine the conditions under which an
anomalous state of this sort can provide an energy benefit to the system. To calculate the
spectrum of collective oscillations we use the Landau kinetic equation in the form

anO(P9T)
(0—k-v)p(p,k)— k'TJ F[p,p1,&(p)=p.e(p1)=pnle(p,Kdr=0. (2)

Here ny(p,T) is a new quasiparticle distribution determined by the solution of (1) at
T # 0, and F(p,p;) is the amplitude of the interaction of the quasiparticles near the new,
non-singly-connected Fermi surface. Expanding the solution ¢(p,K) in spherical harmon-
ics, we retain only the zeroth and the first harmonics, as in the ordinary hydrodynamic
approximation:

#(p,k)=a(p)+b(p)p-k/pk. 3)

542 JETP Lett., Vol. 60, No. 7, 10 Oct. 1994 M. V. Zverevet al. 542



The reason for this procedure is that collisions suppress the other harmonics; these too
survive because the number of particles and their resultant momentum are conserved.'>!
The coefficients a and b are now nonzero not only near the point p=py but also on the
interval p;<p<pj, where they are constant, with values a, and b, respectively. We can
thus equate the diagonal part of the collision integral to zero, but the off-diagonal part,
which is responsible for the scattering of normal excitations with p=pr by condensate
excitations, remains nonzero. We will study its effects separately. At this point, we ignore
that part, as a small correction and rewrite the Landau equation for the coefficients a; and
b, as follows:

—waptkvp(1+fi/3)bp/3+kvgvf1b./9=0,

—wa . tkvp(s,+vvif1/3)b 3+ kvpvof1bp/9=0,
—wbptkvp(l+fylap+kvpv foa.=0,

—wb, tkvp(s. T vivocfg)a.+kvpvafoar=0. 4)

Here we have introduced f,=FprM*/7%, s.=v./vp, vp=pg/M*, and
vl(T)=[p;(T)—p?(T)]/3p% we have also introduced

1 (paADony(p,T) 1 (frADoe(p,T)
vo(T)=— f —— plp, v(T)=—-— ——— pldp. &)
: P_g piD 9P b ¢ Pr pi1 0P

The numbers v~ v, are ~n./p, where n_ is the condensate at the optimum doping
level,'” v, ~ v,=(.2.

Solving system (4), and carrying out some simple but lengthy calculations, we find
a dispersion relation

w*~Aw k> +Bk*=0, (6)
where

A=vE[(1+ f1/3) (1 + o) B+ (5o + viwaf1/3) (5. + v1vofo) 13+ 20y vaf o f1/9],

B=vi[s(1+£1/3)+ f1v1v2][sc(1+ fo) + fovyv2)/27. (7)

Substituting in the Coulomb interaction fo=4me’pM*/m*k?, and retaining only the
leading terms in the limit k— 0, we find two roots, one of which corresponds to ordinary
plasma waves, while the second has a dispersion relation w,=c k. Ignoring small cor-
rections which stem from terms with v, we find

ci=viflviv3)s, (8)

where f? =f,M/M*. The velocity c, is quite low: For the experimental values'®
v1~v,~0.2, the ratio of the corresponding Debye temperature T, to the Fermi energy
does not exceed 0.01, even if we ignore the increase in the effective mass M* due to
correlations (i.e., 7,~100-200 K). The spectrum of plasmons in a 3D isotropic system
with a fermion condensate thus has an acoustic branch. In a 2D system, the plasmons
may be gapless even without a fermion condensate.!>1%

Armed with the acoustic spectrum of excitations, we can calculate the corresponding
component of the resistance p(T). Using the 7 approximation, and ignoring the conden-

543 JETP Lett., Vol. 60, No. 7, 10 Oct. 1994 M. V. Zverev et al. 543



sate contribution, because of its low mobility, we find p(T)~M */ne?7(T), where n is
the density of charged particles at the old Fermi surface. We find the T dependence of
7 by the same methods as in the case of phonons.’*!* We find 7~ 1/T and thus

T M'T ()
P~ ——7.

If we make the simple assumption n~x, where x is the Sr content in the alloy
La,_,Sr,Cu0Q, we find that the dependence p(x)~ 1/x, which follows from (9), agrees
with experimental data'” down to fairly small values of x. For a carrier density
n~10?! cm™? and a temperature T~ 200 K we find p~0.2 m{ - cm, which is consistent
with experiment in order of magnitude.

With decreasing x, the Coulomb parameter av=e?/v p~e?/x'? increases; the region

occupied by the condensate expands, and it ultimately absorbs the old Fermi surface.
Almost no free carriers with a normal effective mass remain, and the conductivity of the
system, now determined by the condensate mobility, falls off sharply, tending toward zero
with decreasing T. At large values x>x., on the other hand, at which « is small and
there is no fermion condensate, the resistance is proportional to 72 at low T, in agreement
with Landau’s theory. In the boundary region in which there is not yet any condensate,
but a “roton” minimum appears in the £(p) spectrum, preceding the condensation, an
intensification arises in the ordinary electron—electron collision integral because of the
small factor de(p)/dp, which is attributable to a scattering of pairs from the old Fermi
surface to the vicinity of the new minimum.

To determine the exact transition law and compare it with experiment will require a
more accurate consideration of the crystal structure, which we have ignored up to this
point. There are points in the electron band spectrum—van Hove singularities—at which,
at a certain occupation of the band, certain components of the quasiparticle group veloc-
ity de(p)/dp are anomalously small at the Fermi surface. The importance of these points
for the theory of high-T. superconductivity has been demonstrated repeatedly (see, for
example, Refs. 11, 18, and 19), but so far the associated violation of the necessary
conditions for stability and for the onset of a fermion condensate have been studied only
in Refs. 4 and 20, in the schematic model of Nozieres,” which was intended for homo-
geneous systems.

In a more realistic approach to the problem, the quasiparticle group velocity near the
Fermi surface can be calculated from the Landau—Pitaevskii formula:

53([’»") 580(1),)‘) J ‘?n(plax) 1
= + | Fi(p,pi,x) ———d'p, /(2m)". 10
op ap 1(P,p15%) p: P1/(27) (10)

The integral here includes a summation over the band index; / is the dimensionality of the
space. Expanding the amplitude (F) of the quasiparticle interaction at the Fermi surface
in spherical harmonics, we find that odd Landau harmonics contribute to this equation in
an anisotropic system. In the coordinate representation, the diagrams of the amplitude F
are local, since they do not contain particle—hole pole contributions. One consequence is
that the Landau harmonics fall off rapidly with increasing index. Second, the effect of the
crystal field of the lattice on their magnitude is slight. In a rough approximation, we can
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restrict this equation to the first harmonic, F{, and we can assume that its density
dependence is the same as that of the effective mass M *. In a homogeneous system, this
first harmonic is related unambiguously to this effective mass by a formula from Fermi-
liquid theory: M*=M(1- 1/3]‘{1)), where f{l) =F prM/m*. We are interested in only the
normal component of the velocity, v, , since the tangential component vanishes at the
Fermi surface. It vanishes because the energy of a quasiparticle is constant, equal to u, in
this case. When the system is stable, the velocity v, is positive, telling us that the energy
of any quasiparticle which is outside the Fermi surface is greater than the energy of the
quasiparticles inside it. We restrict the discussion to the case =2, in which the band
spectrum &°(p) is described approximately by*!

£°(p,x)= B(x)— ¥(x)(cos p,+cos p,) (11)

(we are assuming the lattice constant a to be one). When the occupation begins, this
spectrum is quadratic in the momentum, and the Fermi surfaces are circles. The lattice
has only a slight effect in this case. Closer to the middle of the band, the £°(p,x)
spectrum depends strongly on x. At half-filling, it has saddle points (* m,0) and
(0,% 1), at which the velocity v, vanishes. Near these saddle points, the magnitude of
the velocity is proportional to the distance from the saddle point, so the sign of v, may
change when the second term in (10) is taken into account. Whether this change actually
occurs depends on the sign of F. For good metals—with dense electron systems—the
sign of F, is negative: The Coulomb parameter a=Me?/mpy is small, and the Fock
contribution to F, is predominant. Noting that the derivative dn(p)/dp, is negative
along the entire Fermi surface in the usual case, we see that the signs of the two terms are
the same and that de(p)/dp is positive even at a saddle point. The stability condition is
not violated here. In sufficiently low-density, strongly correlated electron systems, how-
ever, « is greater than one even at the middle of the band, where the electron density is
at a maximum. In the jellium model this situation corresponds to r;=6. Calculations
which have been carried out?> in this model show that the sign of F, is positive in such
systems, and the ratio M*/M becomes greater than one. In strongly correlated systems,
the signs of the band contribution to v, and of the contribution from the interaction are
different. Near the saddle points, the former vanishes as the middle of the band is ap-
proached, while the latter depends weakly on the filling. In an anisotropic system, a new
possibility for fermion condensation thus arises: With increasing carrier density, the nor-
mal component de(p,x)/dp,, decreases, and at a certain critical filling x . it undergoes a
first change in sign near one of the van Hove points. As a result, the stability conditions
are violated, and a fermion condensate arises. While the first harmonic is fairly large, the
distance from the point at which the condensation first begins to the saddle point may not
be small at all. Since v, is positive (although small) in the region adjacent to the con-
densate, we find a sort of expanded saddle point, as is observed experimentally.!!

What happens as x increases? With increasing x, the region occupied by the con-
densate grows, and the number of free carriers decreases. The condensate region ulti-
mately covers the entire Fermi surface. Once this occurs, the conductivity is determined
exclusively by condensate particles, and the metal becomes a poor conductor, since no
normal quasiparticles are left on the Fermi surface. We see that the picture in an aniso-
tropic system in the region in which the van Hove points have an effect is in a sense the
opposite of that which we would expect in an isotropic system, in which corresponding
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phenomena occur as x decreases, not as it increases. Once the middie of the band has
been passed, the first term in (10) begins to increase again, and there is the possibility
(among others) that normal quasiparticles appear at the Fermi surface again—the insula-
tor becomes a conductor again. This picture has certain features in common with the
Hubbard model, although the initial premises of the two models are completely different.

We conclude with a discussion of how the thermoelectric coefficient « of a normal
system with a fermion condensate should behave. In the isotropic case, this coefficient is
given by an integral which contains the derivative d,(p)/dT. The explicit expression for
this coefficient is'*

2ef de(p) 1 d’p
T3] ¢ ‘L 3
37?0 dp w (2m)

- CXp "T +1

where w=ge(p)— u. The integrand is an odd function of the energy at the Fermi surface;
this circumstance usually leads to an anomalous small factor: @~ T/eep, where g is the
Fermi energy. In systems with a fermion condensate, however, the particle and hole
excitations occupy different phase volumes near the Fermi surface. As a result, even if the
vector L is positive, the corresponding integral does not vanish. There is another way to
look at this problem: In a system with a fermion condensate there are two different
subsystems and two different derivatives, dn./dT and dn/dT. Each term contains
du/dT=S, where S is the “residual entropy.” Nozieres” has used the ordinary Fermi-
liquid formula® to calculate this entropy:

a= (12)
w
+1

exp T

S(T)=—f{n(P,T)ln[n(p,T)]+[1—n(p,T)]ln[l—n(p,T)]}d3p/(27T)3, (13)

where n(p,T) is given by the solution of Eq. (1). Since the quantity n(p,T=0) is now
different from both zero and one, we find a finite, nonzero value $~n./n in the low-
temperature limit. At 7=0, the system is actually in a superconducting state, and its
entropy is zero. At T~T,, however, the entropy increases rapidly, so that at 7>T,
expression (13) gives a value which is correct in order of magnitude (we will discuss how
to correct the shortcomings of this formula in a separate paper). If this is so, then by using
(13) we find the following expression from (12):

a(T~T,)~n./n. (14)

This result—that the thermal emf is independent of T at low temperatures—means that
the value of the Lorentz constant K = 772/3¢? changes in the Wiedemann—Franz law; this
constant is now dependent on the ratio n./n. Recent experimental data® 2 provide
evidence that the thermal emf of high-T, superconductors depends only weakly on T at
low temperatures, T>T,, and that this emf increases toward the middle of the band, i.e.,
as the condensate density increases. This behavior of the thermal emf can be utilized to
estimate the entropy of the system. It indirectly answers the question of just why a
quantum chaos arises in these materials at such low temperatures.

In conclusion we wish to express our deep gratitude to G. E. Volovik, N. E. Zein, S.
V. Maleey, F. Nozieres, V. G. Orlov, and N. V. Prokof’ev, Yu. G. Ponomarev and R. Fish
for valuable discussions.
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