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The effect of magnetization relaxation on the spectrum of precessional (spin) and
elastic oscillations of a ferromagnet in the region of orientational phase
transitions is examined theoretically. Near an orientational phase transitions, all
oscillation modes (both spin and elastic modes) can become purely

relaxation oscillations. A relaxation mode is a soft mode at the point of an
orientational phase transition. Consequently, the 100% decrease in the sound
velocity predicted by previous theories cannot occur. © 1994 American

Institute of Physics.

Magnetization oscillations in ferromagnets in a magnetically ordered state are spin
waves in the dissipationless approximation.' Spin waves can also be thought of as a
precession of the magnetization around the direction of the effective magnetic field.
When dissipation in the magnetic subsystem is taken into account, the spin waves are
damped. Since the dissipation is ordinarily slight, spin waves are treated as weakly
damped waves. This is the situation if the ferromagnet is far from points of orientational
phase transitions, with the real parts of the spin-wave frequencies w,, being much larger
than the imaginary parts |w,|: wp,>|w,|. As is shown below, however, near an orienta-
tional phase transition (the point of such a transition is usually determined by the condi-
tion w,,—0), the real part of the spin-wave frequency can become smaller than the
imaginary part. This situation of course affects the spectrum of oscillations of the ferro-
magnet.

In this letter we take a theoretical look at how magnetization relaxation in a ferro-
magnet influences the precessional and elastic oscillations in the region of orientational
phase transitions.

As an example we consider a biaxial ferromagnet which is isotropic in terms of
elastic and magnetoelastic properties. For this case, the magnetic and magnetoelastic
parts of the free-energy density are

1
F=F(M2)+§ a

oM 2 1 2 1 2 1 2 1
- +5 BiMi+5 BoM+ S BsM; - MH+>5 bM MUy,

oY)

548 0021-3640/94/070548-05$10.00 © 1994 American institute of Physics 548



where a, B;, and b are the exchange constant, the anisotropy constant, and the magne-
tostriction constant, respectively; M is the magnetization of the ferromagnet; H is the
external magnetic field, and U is the strain tensor.

Without any loss of generality, we will discuss the case H||x and the ground state of
the ferromagnet, in which we have MJ||H. This phase is stable under the conditions

BZ—BI+H/M>0, B3_BI+H/M>0' (2)

In analyzing the dynamics of the magnetic and elastic subsystems, we start from the
Landau-Lifshitz equations with a relaxation term in Hilbert form and also the elastic
equation.> Here is the linearized system of equations of motion which determines the
dynamics of the transverse components of the magnetization and the displacement vector
of the ferromagnet in the phase M|H, for magnetoelastic waves propagating along the x
axis:

—_— . 2
om, F(iw3ytro)m, ,* L gM~bku, ,=0,

1
(0*=w})u, ,+ 5, ikoMm, .=0. 3)

Here m and u are Fourier components of the oscillatory parts of the magnetization and
the displacement vector of the ferromagnet, p is the density of the ferromagnet, r is a
relaxation constant, w,=s,k, s,zz,u/p, u is a Lamé coefficient, and g is the gyromag-
netic ratio. The characteristic frequencies of the magnetic subsystem are given by

w3 =gM(ak?+ By3— B+ HIM+h,), 4)

where the dimensionless magnetoelastic field is h,=b’M?/4y. Note that at points at
which the phase M|[H|jx becomes unstable—these points are determined by the signs of
the equality in (2) and are points of a second-order orientational phase transition—there
is a softening (in the case h,=0) of the frequencies w,; and w3, or, in other words, of the
precessional mode w,,=( wyw3,)"? and of one of the relaxation modes (either
W= —irwy Of W= —irws).

The dispersion relation for coupled oscillations is

(1 +r2)w6+irw5(w2k+ w3) — w4[2w,2(1 +r)+ W3]

—2irw3w,2(w2k+ W3~ Wpe) + wzwtz[wtz(l +r2)+ W W3k

: 4 4 _

T 0350] Hirew, (wgt w3g) — 0, W g3 =0, ()
where

W3 = W3k~ Whpe, Whye™ tht . (6)

We first take a more detailed look at the spectrum of spin oscillations of the ferromagnet
in the absence of magnetoelastic coupling (wy., #,=0). In this case the dispersion
relation becomes

(1+r) o’ +iro(wyg+ w3) ~ Wr5034=0. )

Its solution (under the condition r<¢1) is
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We thus see that, far from points of orientational phase transitions, at which we have
[according to (2), (4), and (6)] w,,,=0 (the transition M,—M, M) or w3;,,=0
(M, =M, ,M,), With @403, r* (w5~ ®34)°, the total effect of the magnetization
relaxation on the precessional oscillations reduces to a damping of the spin waves. This
damping is slight. Near points of orientational phase transitions, e.g., at the point
®,5,— 0 (in this case we have w, < w3 gy if k—0), in contrast, the situation may change
fundamentally. For example, in the case w, w35 <r2(w,e— w35)?, solution (8) repre-
sents purely relaxation oscillations:

0= i35 /(03— Wa5), ©3= —irozg. )]

These frequencies determine the reciprocal relaxation times of the transverse components
of the magnetization of the ferromagnet. The relaxation mode w, is soft: Its frequency
tends toward zero at the stability boundary of the phase as k—0. In the vicinity of
orientational phase transitions, ws,,— 0, the solution is given by (9), on whose right sides
the subscripts 3 and 2 must be interchanged.

In the absence of magnetoelastic coupling, far from orientational phase transitions,
the magnetization oscillations are thus weakly damped spin waves, while near orienta-
tional phase transitions the precessional nature of the motion of the magnetization may
change to a purely relaxation motion. In the latter case, a relaxation mode is soft (its
frequency is zero precisely at the transition point in the case k=0); this mode is involved
in the orientational phase transition itself.

We now incorporate a magnetoelastic interaction. For definiteness we examine the
spectrum of coupled oscillations in the region of the orientational phase transition
wy,— 0. We first write a solution of dispersion relation (5) in the case k=0:

2]1/2_ 1

017= £ 0w § r*(wp— w3p) 7 ir(wytwiy), @3456=0. (10)

At the point of an orientational phase transition (w,,,=0), we find w,= @y from (2),
(4), and (6). We thus see that when magnetoelastic coupling is taken into account, the
solution w , describes a damped precessional motion of the magnetization, both far from
and close to the orientational phase transition, since the condition
O pe®30>FH (W, — w3)° essentially always holds under the condition r<¢1. The other
four frequencies may describe both relaxation and elastic oscillations. To determine their
nature, we write a solution of dispersion relation (5) for k # 0 (but k—0). This solution
is

)2]172

— 12 1
012= w3~ 7 r (W — 03 — 3 ir(@yt wyy),

W34= 01— 0/ w3) 2~ 3 ir0X (2w + o)/ 05, (11)

2 .
wss= o *[4wywyq—~rei]—ire}/ 2wy .

These expressions were derived under the conditions o, <@, , wz; and r<1. It follows
from (11) that the spectrum of coupled oscillations of the ferromagnet near an orienta-
tional phase transition with & # O consists of a weakly damped quasispin branch
w;,, a weakly damped transverse quasielastic branch w;,, and a branch ws4, whose
nature is determined by the relation between the quantities w,; w4y and rzwt2 . Under the
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condition w,;w, > rzw,z, the branch ws¢ is a weakly damped, transverse, quasielastic

oscillation branch with quadratic dispersion [since it follows from (2), (4), and (6) that we
have w,,=gM ak? at the point of the orientational phase transition):

_ 2 1.2
ws6=F oWy /0y) P =T irei/wy,. (12)

In the case wzkw2xk<r2w,2, on the other hand, branches ws¢ are purely relaxation os-
cillations (quasimagnetic and quasielastic) with a quadratic dependence on the magnitude
of the wave vector:

- a2
W= — iy /r, = —irw;/my. (13)

In the limit r— 0, we should use the exact formula in (11) instead of the first formula for
ws.

In the limit k—0, the branch w;, is an activation branch with a gap size which is
governed, according to (11), by the magnetoelastic coupling and the magnetization re-
laxation. The other branches are of a nonactivation nature. One of the quasielastic oscil-
lation branches (w3 4) has a linear dispersion in the case £—0 in the vicinity of orienta-
tional phase transitions, with a slight dispersion of the propagation velocity [the factor
(1— wme/w3) " in (11)]. When magnetization relaxation is taken into account, on the
other hand, this elastic branch is damped. The interaction between magnetic and elastic
oscillations has the strongest effect on the dispersion relation on the second nonactivation
branch of coupled oscillations, ws ¢ . This branch may be both quasielastic and quasimag-
netic. In both cases the dispersion relation for this branch is quadratic in k. Under the
condition wzszsk>f2w,2, the branch wsg is quasielastic. Under the condition
kaw2sk<r2wtz, the branches ws ¢ describe purely relaxation oscillations—respectively
quasispin and quasielastic oscillations. These two modes soften as the orientational phase
transition is approached.

Near an orientational phase transition, the condition kaw25k<r2w,2 reduces to a
condition imposed on the parameters of the problem. Since we have wy;=w,. and
wyx=gMyak?® in the limit k—0 and near an orientational phase transition, this condi-
tion can be written as gM Oawmc<rzs,2 it actually reduces to a condition imposed on a
damping parameter. For typical values of the constants for a ferromagnet (g==1x% 10’
Oe s, My=1x10% Oe, a=1x10"1% cm™2, 5,=1X10° cm/s, b=1X10%, and
u=1x10" erg/cm®), we find the following restriction on the damping parameter:
r>10"*. This condition can definitely hold near specifically an orientational phase tran-
sition, since we know that the damping of spin waves strengthens sharply as an orienta-
tional phase transition is approached.

Near the orientational phase transition ws,,—0, the spectrum is found from (10)-
(13) by interchanging the 2 and 3.

In the region of orientational phase transitions, all types of motion (of both the
magnetization and the lattice) may thus reduce to purely relaxation oscillations. In this
case the transition involves specifically soft relaxation modes. When a magnetoelastic
interaction is taken into account, there is always a weakly damped activation quasispin
mode in the spectrum of coupled oscillations of the ferromagnet. A conversion of a
softening quasielastic oscillation mode near an orientational phase transition into a purely
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relaxation mode can explain why experiments carried out to measure the sound velocity
near an orientational phase transition have yet to observe the theoretically predicted
100% decrease in this velocity precisely at the point of the orientational phase transition
or the dispersion of this velocity as the point of the orientational phase transition is
approached.>

This study was supported in part by a grant from the Sloan Foundation, awarded by
the American Physical Society.

UA. I. Akhiezer et al. Spin Waves [in Russian] (Nauka, Moscow, 1967).

2E, M. Lifshitz and L. P. Pitaevskii, Statistical Physics (Pergamon, Oxford, 1980).

3L. D. Landau and E. M. Lifshitz, Theory of Elasticity [in Russian] (Nauka, Moscow, 1987) (previous editions
of this book have been published in English translation by Pergamon, New York).

4V, D. Buchel’nikov and B. G. Shavrov, Fiz. Met. Metalloved. 68, 421 (1989).

5V. L. Ozhogin and V. L. Preobrazhenskii, Zh. Eksp. Teor. Fiz. 73, 988 (1977) [Sov. Phys. JETP 46, 523
19771

®1. M. Vitebskii et al., Zh. Eksp. Teor. Fiz. 98, 334 (1990) [Sov. Phys. JETP 71, 187 (1990)].

Translated by D. Parsons

552 JETP Lett., Vol. 60, No. 7, 10 Oct. 1994 V. B. Buchel'nikov and V. G. Shavrov 552





