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An exactly solvable 2D quantum spin model is analyzed. It is shown that
elementary excitations carry a nonzero spin chirality (a topological charge), but
only pairs of these excitations with opposite chirality contribute to the
thermodynamics, so the system is always in an antichiral spin state. It is suggested
that the elementary excitations of the quantum antiferromagnet discussed

here are massive if there are no topological terms in the Hamiltonian. © 71994
American Institute of Physics.

Quantum antiferromagnets have reattracted research interest in the last few years,
primarily because of Anderson’s hypothesis' that the behavior of such antiferromagnets is
pertinent to high-T. superconductivity. There is accordingly the important question of
whether elementary excitations in 2D quantum antiferromagnets have a gap in their
spectrum. Unfortunately, this fundamental question cannot be answered rigorously in
approximate descriptions.””® It is thus worthwhile to study quantum spin models which
can be solved exactly. Two-dimensional quantum systems are also of interest because
they allow the existence of the elementary excitations known as anyons, whose statistics
lies between those of the Bose and Fermi cases.” Several authors link this feature of 2D
quantum systems with the behavior of metal oxides (see Ref. 8, for example). In a
well-known paper,” Wen and co-workers related superconductivity in strongly correlated
electron systems with spin chiral states which break the T and P symmetries of the
system.

In this letter we present an exact solution, found by the quantum method of the
inverse scattering problem,' of the Schrodinger problem for an effectively 2D quantum
model spin system in which T and P symmetries are broken. We show that excitations of
this system, which are analogous to classical instanton solutions,!! are gapless. They
carry a nonzero spin chirality, but only pairs of these excitations with opposite chirality
contribute to the thermodynamics. These systems could accordingly be called “anti-
chiral.”

We first consider the very simple case of two spin-1/2 chains in which the basic
properties of the 2D space are preserved. The Hamiltonian of the system is

— 2
H_E {S(Sl,nSZ,n+Sl,nSZ,n+1)+40 (Sl,nsl,n+1+52,n52,n+l)

n

L ) ‘ /
+Seelkl(sll,n_slln+])Sl,n+ls7_,n—Ef’ (1

580 0021-3640/94/080580-06$10.00 © 1994 American Institute of Physics 580



where the operators s;,2,n (i=x,y,z) represent the ith projection of the spin on the first or
second chain at site n, 6 is an interaction parameter, and E is the energy of the “ferro-
magnetic” state. The third term in Hamiltonian (1) is unusual in form. It may stem from
a spin—orbit interaction if the orbital motion is frozen at sufficiently low temperatures. In
this case 6 is proportional to {*/(1} ,— 15, , 1)} ,+115,), where the operator [}, , rep-
resents the ith projection of the orbital angular momentum of the electron, and the angle
brackets mean the expectation value. It can be seen from expression (1) that the third
term breaks T and P symmetries individually, while TP symmetry is unbroken. Only the
replacement of 1 and 2 and (n+1) by (n—1), and vice versa, leaves the Hamiltonian
unchanged. The structure of third term can be understood in the long-wave limit. Denot-
ing by n the density of the spin ( n=1), we see that the effect of the third term is
analogous (in a phase with a zero magnetic moment):

Io=(6/2m) f e*le, n'o n*a n'd’x, u,v=12. ()

Expression (2) is the definition of the topological (Noether) charge for the chiral field n
or the time component of the conserved topological current. Two n fields can continu-
ously deform into each other only under the condition!? Iy1=1y,. In the classical case,
we know that (7,/6) is an integer'>—specifically, the number of instantons in the system.
In another representation of the n field, we easily recognize the Chern—Simons term’ in
the third larger term. The Chern—Simons term is specific to (2+1)-dimensional systems.
For (1+1) or (3+1), it is not possible to construct a conserved scalar or pseudoscalar
with the properties of a topological charge. For (3+1), for example, we have the vector
I, instead of I, and we can construct a Hopf invariant which takes on only integer
values.!? In the (2+1) case, I, is a characteristic of the homotopy class' 7,(S 2y=Z. The
field distribution is topologically nontrivial if 7,(S?) # 0. This term is a total time
derivative'* 9,/,=0, so it does not alter the classical equations of motion.

From the classical standpoint, frustration occurs in a system with Hamiltonian (1).
Two-chain quantum spin models are of practical interest. Several substances with a site
spin of 1/2 and with the “triangular” spin—spin interaction discussed above have recently
been found.'

The equations of the Bethe ansatz for the rapidities A are!®

A+ oY —\jti
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Here N is the number of sites in each chain, and M is the number of spins down. An
eigenvalue of the Hamiltonian is

1522

1

(4)

Finding the \; from (3), and substituting them in (4), we solve the Schrodinger problem
for arbitrary M. In the simple case in which the system has a zero magnetic moment, we
have, for the ground state,
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E0=—2NJ’_m dwl[1+cos(w8)][1+exp|w|]~ L. (5)

Equation (5) is an even function of the chirality parameter 6 [we define the spin chirality
of the system as the nonzero expectation value of the operator E,,e“"(e’l,,,—e’zv,,ﬂ)
X(e’l"nﬂe’z,n). At the same time (as was to be expected on the basis of the classical
limit), the ground-state energy is periodic in the parameter . In Ref. 16 we called such
a state “antichiral.”

When a weak magnetic field h<8(I+26%)/(1+4 6%) is applied, we find, using the
Wiener—Hopf method,

Ey=Eg|lp=0—hm*N+N(wm?/2)?=Eg|—o—N(h—m)>. (6)

For strong external magnetic fields, #>8(/+26%)/(1+46?), the energy of the “ferro-
magnetic” ground state is E=—4Nh. As can be seen from (6), a nonzero magnetic field
below the critical value does not alter the antichirality of the system, i.e., the numbers of
instantons and anti-instantons. For a very simple doublet excitation we find, following
Ref. 17,

E ;=E + a{sech(m\}+sech[ m(Ay+ 6)]. 7

Two doublets can form a singlet or a triplet.)” It is easy to verify that the doublet state is
gapless. The same is true for a singlet and a triplet. The question of a gap in the spin
excitations of a 2D spin-1/2 system is of fundamental importance for reaching an under-
standing of the superconducting and antiferromagnetic orders in metal oxides.'”® We
have shown here that excitations of a system with Hamiltonian (1) are gapless. How-
ever, the Hamiltonian contains topological terms with a  vacuum.” The situation is
analogous to the Haldane picture of a 1D antiferromagnet.'®!® Haldane suggested that
chains with an integer site spin have a gap in their spectrum, while excitations in chains
with a half-integer spin at the sites are gapless. However, the difference between the
descriptions of systems with integer and half-integer site spins is in specifically the term
with the 6 vacuum: It does not alter the classical equations of motion, but it substantially
alters the quantum properties of the system. For systems with half-integer site spins we
have @ # 0; this condition causes the gap to vanish.'® Using the same arguments which
Haldane employed, we might suggest that in our case a gapless behavior of the excita-
tions of the system stems from the nonzero # term in Hamiltonian (1). (The spatial
anisotropy of the spin—spin interaction, which is proportional to an even power of 6, does
not erase the gap in the absence of a topological charge, if we work by analogy with Ref.
19, for example.) It can thus be assumed that a 2D quantum frustrated spin system with
a site spin of 1/2, but without a chiral increment in the Hamiltonian, has elementary
excitations with a gap. These spin gaps may be a source of an antiferromagnetic
“quasi-order,”*™® and strongly correlated 2D systems may exhibit superconducting
properties,® as in Laughlin’s picture of the fractional Hall effect.® The effect of a mag-
netic field perpendicular to the plane passing through the chains is also analogous to a
topological term (Ref. 21, for example; this term is an effective surface term in spin
space). In this case the # vacuum in the model under study here is analogous to a
statistical field of anyons.” At values of the external field which cancel the internal 8
vacuum, the excitations of the system have a gap, while in other cases they are gapless,
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and the picture corresponds to the picture of the fractional Hall effect.” Another basis for
our suggestion is provided by the exact classical solutions for a 2D magnetic material,!
in which the excitations are massive (see also Ref. 22) and in which the chiral equations
of the Bethe ansatz are similar to (2), and for the Wess—Zumino—Novikov—Witten
model,” in which the excitations are gapless because of the #-vacuum term.

Double excitations alter the chiral properties of the system, since expression (7) is
not even in 6. Analysis shows, however, that the contribution of these excitations
(spinons) to the thermodynamics comes from pairs with different chirality signs (like
excitations carrying a larger spin). This result of course agrees with the circumstance that
the topological charge of a system does not change either when a nonzero external field
is applied or at a nonzero temperature.

We have discussed the case of two spin chains in detail. We now generalize the
discussion to an arbitrary number of chains. For L (L is an even number) spin-1/2 chains,
we have the following expression for the transfer matrix and the Hamiltonian:

T(N)=T(A—0,))T(A\—6,)..T(A\—6,), (8)
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Here P is a permutation operator; in the first larger term we need to replace the term
Py, nS1, by PSL,nSI,n+1 (this case corresponds to boundary conditions which wind around
a torus); 6 =6;,—0;, 0y .1,=6;; the products are over all i and k; and T(\) is the
standard transfer matrix of one spin-1/2 chain.’ In the limit 6,,— we have L nonin-
teracting chains of N spins. In the limit §,,=0 we have a chain of LN spins. We have
omitted from (9) some higher-order terms with commutators. All of them, like the third
term, are of the same nature as in the case of two chains, since they do not alter the
classical equations of motion, and they constitute topological charges on a lattice of
higher order in terms of spin operators. The terms which have been omitted satisfy the
long-range nature of the Chern—Simons term in 2D systems.” The energy of a system
with M spins down is

L M 1
EZE El e+ O, (h+ B, 1) (10)
and the A, are found from the system of equations
L N N M _ .
| o R ARC LU, | et LR R Y3 (11)
it (Nj+0)T(Nj+ 6, +1) it Ne— i
k#j

In the limit N— = we have the following expression for the ground state:
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L
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For this state we have M =LN/2. By analogy with expression (7) we can derive an
equation for a spinon excitation:

L
E,=E,+m, sech[m(\o+6,,)].

r=1

As in the case of two chains, only pairs of these excitations with opposite chiralities
contribute the thermodynamics, and a 2D quantum system with Hamiltonian (9) is anti-
chiral, although each of the spinon excitations carries a nonzero chirality (a nonzero
topological charge). Again in this case, the excitations are gapless. As in the case of two
chains, however, the Hamiltonian of this system contains nontrivial topological terms
which break the T and P symmetries of the system and which, as before, may be the
reason for the absence of a gap. Again by analogy with Haldane’s work, we can suggest
that a frustrated, quantum, effectively 2D antiferromagnet with site spins of 1/2 has gap
excitations.

In summary, we have discussed a frustrated, effectively 2D quantum system whose
Hamiltonian breaks 7 and P symmetries and allows an exact solution. There is a spin
antichirality in this system. We have shown that a doublet excitation of this system,
which is analogous to classical instantons, carries a nonzero spin chirality, but only pairs
of these excitations with opposite chiralities contribute to the thermodynamics. We sug-
gest that the topologically nontrivial terms in the Hamiltonian are responsible for the
gapless behavior of excitations in this system. We also believe that the elementary exci-
tations have a gap for frustrated, 2D quantum systems without T and P breaking.
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