Aharonov-Bohm effect in the Luttinger liquid
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In systems with the spin-charge separation, the period of the Aharonov—Bohm
(AB) oscillation becomes half of the flux quantum. This effect related at

least to the fact that two electrons are needed for the creation of holons (spinons).
The effect is illustrated using the example of the Hubbard Hamiltonian with

the help of bosonization including topological numbers. It exists also in the
Luttinger liquid on two chains. The relation to a fractional 1/N AB effect,

which can be associated with a modified Luttinger liquid, is discussed. © 1994
American Institute of Physics.

In nearly all strongly correlated 1D electron systems there exists the phenomenon
known as “‘spin-charge” separation.' It was also recently argued’ that the spin-charge
separation is not only inherent to 1D, but also occurs in the two-dimensional systems
related to HTSC. The degrees of freedom associated with a single electron are split into
two independent spin and charge degrees of freedom associated with single-particle gap-
less excitations: spinons and holons as in a 1D Luttinger liquid.?

We show* that the properties of strongly correlated systems are associated with a
new type of AB effect; specifically, the period of the AB effect decreases and becomes
half of the period of the AB oscillations for the free electrons.” This is valid for all
systems in which the spin-charge separation exists. The spinon and holon excitations are
created by two single-electron operators which are associated with the spin and charge
density fluctuations. This is also the reason why the period of the AB oscillation is
halved. With holons as well as with spinons two types of topological numbers are asso-
ciated bound with some selection rules defined by the parity of the total number of
electrons. As a result, all properties are parity dependent and the parity effect exists in
the Luttinger liquid of spinful electrons. However, the period of the oscillation for the
Hubbard ring in the limit of U— decreases N, times, where N, is the number of
electrons on the ring.%’” The other important feature of this effect is the absence of the
parity effect, which exists for free electrons™® and for interacting fermions.>*!® The
absence of the parity effect is connected with the 1/N, decrease of the AB period. The
system in the strong-coupling regime can be described by a modified Luttinger liquid.

To illustrate the decrease of the AB period we consider the Hubbard Hamiltonian

HztE (a:'aa(i+1)a+H.C.)+U2 nihgy, (1)
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where ¢ and U are hopping integral and the constant of the on-site Coulomb interaction
between electrons, respectively. First, we go to the continuum limit and then apply the
bosonization, where the Hamiltonian is'!

H, =it sin k2, deX[‘I’sf(x)ﬁx‘l’sR(x) =W ()9, ¥ (x)]
s 0

L
+Uj dx[:jor i jo i+ WL () (0)¥ (0)¥ _(x)+Hc], (2)

where W,. are left and right movers and jo; =¥, (x)¥;, (x)+ ¥ _(x)¥,_(x). The
analogous expression is written for the current j,, of down-spin fermions.

We take into account the periodical boundary (PB), and twisted boundary (TB)
conditions, when the Hubbard ring is located in a transverse magnetic field. In both
cases the fermion field Wg,(x) can be represented as: Wg.(x)=1/V27a
Xexp( *iJand p+(x)], where a is the cut parameter and the boson fields ®g.. for PB
conditions can be represented as: g, (x)=Ppx) = [L . 7mg(x")dx'. Here mylx) are the
variables conjugate to @4 In terms of these fields, the Hubbard Hamiltonian takes the
form

L tsin kg
H= fo dx(—z—‘{w?+((9x¢)T)2+(T'_’l)]

@
U[a"(bﬁ" by cos [VaAm(®,~®))]|. (3)

T " 27la?

On the ring the variables 75 and @4 are multivalued. It is, therefore, convenient to

decompose them into single-valued variables and topological quantum numbers which
are related to the winding numbers on the ring:

® e (x) =D 4(x) % fjxwﬁ(x’)dx’+(NBiJB) = @)

2L
where the new variables ﬂﬂ(x) and @ are single-valued and Ng, J 5 are topological
numbers associated with the charge and current on the ring. These numbers are connected
by the selection rules, which depend on the parity of the total number of electrons, N,.
Imposing the periodical boundary conditions, we obtain the following selection rules:
(= DW= = (= 1)¥e=D_ which is a simple generalization of the selection rule for
the Luttinger liquid of spinless fermions.'® Implicitly, these selection rules dictate that if
the number of electrons is odd, then the number Nz is even and the number J 4 is odd, or
the number Nz is odd and the number J g is even. On the other hand, if the number of
electrons is even, then the number N 8 is even and the number J 8 is even, or the number
N g is 0dd and the number J 4 is odd.

For the case of TB conditions, we introduce different flux values for the up- and
down-spin electrons fg, where the shift has the form @ 4. (x)=P 4. (x) * \/;f x/L.
We separate the theory into two parts, introducing the spin and charge fields
¢, =(P;—P)/2 and @.=(P;+P,)/2, the fluxes of the electrical and magnetic field
fs=(f1—f )2 and f.=(f;+f )2, and the topological numbers N,=N;—-N|,
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Jy=J;=J, No=N,+N, J.=J;+J,. In terms of the topological numbers and the
single-valued variables 7; and ®g the Hamilionian can be split into two parts
H=H_+H,, where

A.m

TerlU LN, )

L
HC=ACJO dx[mi+(d,00)° 1+

A,

16L

Hs=Astdx[7Tf+(ﬁx<P5)2]+ [(J+4f)*+N?]
0

U L
+
zwzazfo dx cos

(6)

e

A, 4AL

are associated with the charge and spin degrees of freedom, respectively, and

f/s=t sin kp = U/ . The choice of integer numbers J ., N, J, and N is dictated by the
selection rules described above. For example, if the number of electrons N, is odd, then
and the numbers N 1 and N | have different parities; i.e., one of these numbers is odd and
the other is even, since N.=N_,=N;+ N . This means that the numbers J, and J | also
have different parities and the number J. is odd. The fact that the Hamiltonian for the
charge degrees of freedom is split into two parts and the number J. consists of the sum
of the two topological numbers J; and J | is the reason why the “holon” Hamiltonian has

the flux period fr=1/2, rather than the conventional period f;=1.

In the case where N, is even, the selection rules indicate that the numbers N, and N
have the same parity. This means that the AB effect is half-flux quantum periodic and the
energy-flux dependence is described by parabolic segments with the minima located at
the flux equal to integers and half-odd integers [see Eq. (5)]. We thus have a new parity
effect in which there is a difference in the behavior of the odd and even numbers of
electrons, i.e., there is a shift in the energy-flux dependence by a quarter of the elemen-
tary flux quantum. This behavior is in contrast with the parity effect for spinless
fermions,>>° where the shift is a half of the flux quantum. A similar situation occurs for
an Aharonov—Cashier effect.

To calculate the current of the Hubbard ring, we change the problem to the
Lagrangian formalism, drop the irrelevant spin degrees of freedom, and consider only the
holon Lagrangian L . and the action S... In the Lagrangian formalism our fields ¢, depend
on the space and time variables ¢.=¢.(x,t) and satisfy the PB conditions for both
variables. The multivalued field ¢.(x,¢) can be split into a single-valued field ¢.(x,¢) and
into terms related to the winding numbers » and m, with the help of the relation
@.(x,t) = ¢u(x,t) + \mxn/(2L) + \Jwtm/(2L). In the Lagrangian for the charge
degrees of freedom,

L L
L=~ f dx[q‘:?/(cmc)+Ac(ax<pc>2]+i4—€<Ju+4f> f ¢dx, )
0 0

the single valued field ¢.(x,t) can therefore be separated. The contribution of the orbital
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motion to the partition function Z of the ring can be calculated with the help of the
continual integral over the single-valued field ¢.(x,#) and the sums over the winding

numbers n and m:'>
Zc:J D(ch exp[‘sc(¢c,-]0’”’m)]’ ®)
n.m

where the action has the form

LB
Sc=f f dxdt
0 Jo

After the summation over the winding numbers the partition function Z . takes the form
Z.=Zy94(z5,97)03(2,1,qm), Where O5(x,y) is the theta function and Z,, is the partition
function which is associated with the single-valued field ¢_;
_(Jo+4fH)m 3 7L —o B TA B
ZJ_ 16 ? q.’—‘exp 16ACB > Zm_ > Qm_‘exp 4L .

We derive the low- and high-temperature asymptotic relation for the free energy
F=-TlogZ,. In the case of the low-temperature limit S—c we have

_mAJ gt 4f)?
- 16L ’

b (Jo+d
FIA ) +A (00— L) ©)

(10)

which is a flux-dependent term of Eq. (5), where J, is even or odd, which corresponds to
even or odd number of particles, respectively, on the ring. In the case where
7L/16A .31 or B—0, the contribution of the orbital motion is

wLT m(Jo+4f)
T6A, cos | — |-

AF=-2T exp( - 1

After several recent experimental studies' the problem of the persistent current has
been theoretically studied extensively (see Refs. 7 and 15 and the bibliography cited).
The study of the problem was stimulated by the discrepancy between the amplitude of the
current estimated theoretically and observed experimentally. The experiments indicate
that this amplitude is several orders of magnitude larger than the theories predict.

The persistent current at zero temperature is

; (12)

Vel .. Jo
J,=—0F/df= —2777 f+?
where —1/4—J/4<f<—J/4+1/4, and Vp=A_, which increases with U. This means

that the current with electron—electron interaction is enhanced. At high temperatures this
enhancement is even larger:

. (13)

J,=—aT exp| — sin f+z—

v
16V, 2

Because of the exponential prefactor, the current decreases appreciably with the tempera-

ture but increases exponentially with U. The characteristic temperature where the current
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is still visible is about T .~ V/L, which is the interlevel distance of the size quantization.
The described enhancement is inconsistent with the arguments of Ref. 16 but agrees with
the numerical simulations.!’

In the strong-coupling limit U — o, the problem can be diagonalized with the help of
the Bethe ansatz. The spectrum obtained originally by the author® has the form
X _277-1,,+27r 2J, 2=nf
L 'L N L

(14)

The (half) integers I, and J , are holon and spinon quantum numbers, respectively. If we
introduce the notation ¢=37 /N, then this equation will look like the spectrum of spin-
less fermions in the flux f+ ¢. In the continuum limit of this spectrum we can write an
effective Hamiltonian of spinless fermions

L
H= fﬂ (4" (x)(Kfy=kp) ¢(x)]dx, (15)

where kp=mN/L, K;y=K+2m¢p/L+2mf/L, and K is the momentum operator.

For comparison of the weak- and strong-coupling cases we represent the holon
Hamiltonian (15) in the bosonized form. With the help of the Loss result'® the Hamilto-
nian of the charge degrees of freedom takes the form

H=VFJOL[WZ+(axcp)z]dx+Y%7I{N2+(J+2¢+2f)2]. (16)

In comparison with Eq. (5), there appears the fictitious flux ¢, which has fractional values
¢=p/N. Without an external magnetic field the selection rules have the form

(— DV = (= 1)Ne*1+¢ where the value ¢ can be equal to 0 or 1. The latter value
means that the topological numbers N and J, which in the Luttinger liquid are coupled,
now become decoupled. This stems from the fact that the parity of N, plays no role, since
we can change the value ¢ from 0 to 1 and the value J by 2 without changing the energy.
This indicates a violation of the conventional Luttinger liquid, where the topological
numbers N and J are coupled by the parity of N,.

The parity effect appears at a finite value of U. The solution will then have a
structure similar to Eq. (14) plus the energy of the spin-wave excitations. Therefore, for
an odd number of particles in the bosonized form the Hamiltonian is

Vz

L, Vim F
H=ij [w+(ax¢)2]dx+—L—{N2+(J+2¢+2f)2]+L-U|sin 2w . 17
0

We see that, in addition to N and J, the topological quantum numbers, there appears a
new term which is the internal energy of the field ¢ and the energy of the spin-wave
excitations. Now the value of the field ¢ cannot take any rational number; i.e., the finite
U lifts the degeneracy and the parity effect appears.

For an even number of particles we must change in Eq. (17) the sin 27r¢b to cos 27¢.
At zero external magnetic flux the selection rules take the conventional form
(- ¥ =(=1)Ne"! which dictates that ¢=0. This corresponds to the maximum of the

653 JETP Lett., Vol. 60, No. 9, 10 Nov. 1994 F. V. Kusmartsev 653



spin-wave excitation spectrum,; i.e., with the external magnetic flux f there appears the
spin-wave excitations (nonzero ¢, which compensates ). This again indicates a violation
of the conventional Luttinger liquid properties, where the field ¢ does not exist. This
question needs special attention.

Thus, in a weak coupling the magnetization is a half-flux periodical function. The
amplitude of the oscillations increases with U. When the spin and charge degrees of
freedom are separated and composite particles (holons and spinons in our case) are
created, half-flux periodical oscillations of the AB type occur (see, for comparison, Ref.
18). Therefore, the period of the AB oscillations in any strongly cotrelated systems
always decreases.

This effect does not exist for interacting spinless fermions on a single-channel
ring.>!? But the effect arises when the ring consists of two or many chains.?’

The reason for the effect is similar to that for the Hubbard ring. We can prove
exactly that the AB effect has the period of the half-flux quantum for any interactions
which are not larger than the Fermi energy. When the interaction is comparable with the
Fermi energy, the continuum approach is not applicable and there can occur a fractional
1/N, AB effect® or a fractional M/N, AB effect.’' Thus, if in real HTSC materials in a
normal state there occurs a spin-charge separation, the AB effect must have a half-flux
quantum period in units of the elementary flux quantum. To observe such predictions in
HTSC might be a good challenge for experimentalists.
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