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The coexistence of two continuous textures of different dimensionalities is
observed in the A-phase of superfluid *He: nonsingular 41 vortex lines that cross
a planar transverse soliton. The nontrivial 73 topology of the intersection

point is discussed in terms of the linking numbers. © 1994 American Institute of
Physics.

Several types of coexistence of topological defects of different dimensionalities
were found in condensed matter with broken symmetry. (i) An object of lower dimen-
sionality may serve as a boundary for a higher-dimensional object. Examples of this type
are a monopole as a termination point of a disclination line in liquid crystals,' a cosmic
domain wall with a string as its edge line,” an antiphase boundary terminating at a
dislocation line in ordered binary alloys,? a planar soliton in superfluid *He-B emanating
from a vortex line,* etc. (ii) An object of lower dimensionality may exist in a higher-
dimensional object, from which it cannot escape to the world outside. Examples of this
type are a Bloch line in a domain wall in ferromagnets® and a vortex sheet in *He-A,
which is a two-dimensional soliton with accumulated one-dimensional continuous
vortices.>®

Here we report on an observation of another type of topological interaction: (iii) a
nonsingular vortex line that crosses a transverse planar soliton (Fig. 1). In contrast with
the geometry of the vortex sheet, in which the vortices are parallel to the soliton wall, in
our geometry the vortex and the soliton have only zero-dimensional common region—the
intersection point. The intersection represents a point-like object, which is singularity-
free, since singularities are not created easily in a rotating container. Point-like continu-
ous objects, which are usually described by the 7; homotopy group, were discussed in
many areas of physics: particle-like solitons in the phases A and B of superfluid *He
(Refs. 7-9); “textures” or Skyrmions in particle physics and cosmology;>!"°
“configurations”'""** or “semi-defects”'® in liquid crystals; solitons in ordered
magnets,'* etc. In all cases such an object should collapse to zero size due to energetic
factors. (In some cases, however, stabilization at some length scale is suggested: this
length can be produced (i) by the higher-gradient energy terms,® (ii) by dynamical con-
servation of some physical quantity which fixes the size of the solitor)““ or (iii) by a
natural scale like the cholesteric pitch.' In our case the twisting of the I texture within a
soliton, i.e., the nontrivial 7| topology of the soliton, together with the nontrivial 7,
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FIG. 1. A cluster of vortices crossing a transverse soliton.
The cluster is surrounded by a vortex-free region with a
nonzero counterflow ¢,—v,. The counterflow influences
the position of the soliton peak in accordance with Fig. 3.

Soliton

topology of the 1 texture in the vortex, necessarily produce the nontrivial a3 topology of
1 at the intersection of these planar and linear objects.

A soliton in *He-A is a wall between domains with parallel 1=d and anti-
parallel I=~d orientations of the A-phase orbital 1 and magnetic d anisotropy axes. A
soliton, whose plane is oriented normal to the magpetic field direction HJz, is the so-
called compos1te twist soliton, in which the I and d axes are twisted in opposite
directions:'® Iy;,,.(z) =% cos a(z)+ y sin a(z), dsomon(z) x cos B(z)+y sin B(z), with
a(+9%) — B(+) = a(—) — B(—)+

The soliton often appears after a cool-down to the superfluid state. Its existence is
seen in cw NMR experiments as a satellite peak in the NMR absorption as a function of
excitation frequency f (see Flg 2) The frequency of an absorption maximum is conven-
tionally expressed as f>= f0+R f" , where f,=yH/2m is the Larmor frequency, and fiis
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FIG. 2. cw NMR absorption as a function
of the frequency shift Af=f— £, from the
Larmor frequency f, for six different rota-
tion velocities ), The data are recorded in
one continuous run, in which the rotation
velocity is increased from zero to the
maximum velocity, ), =0.26 rad/s, while
the transverse twist soliton is in the con-
tainer.
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FIG. 3. (@) The normalized frequency shift R2; of the twist soliton satellite peak versus the rotation velocity
), when the container is first accelerated from the stationary state to the maximum velocity, Q,,=0.26 rad/s,
and then decclerated to (2=0. The_initial value of RZ, is marked by (O). The hysteresis in RZ, reflects the
1nﬂuencc of the counterflow v, — QX7 on the structure of the soliton. At the initial vortex-free stage, when
v, =0, the counterflow increases with £2, which leads to the initial increase of R2,. After the critical velocity €,
is reached, the counterflow region decreases when a cluster of vortices is formed. As a result, RZ, decreases
between (). and ,. During deceleration, the counterflow region shrinks further until it disappears at
0=Q, — Q.. At still lower (}, i.c., in the absence of the counterflow, R2, is nearly the same as in the stationary
state. The solid line is a theoretical fit assuming that the frequency shift of the soliton peak due to the
counterflow is %{(V,— U,)?), averaged over the soliton. In this fit, we used for the nucleation threshold the value
Q.=0.12 rad/s. The value €},~0.13 rad/s was determined independently from the behavior of the vortex
satellite.

the temperature- and pressure-dependent longitudinal resonance frequency of the A
phase. The dominant peak at R =1 originates from the dipole-locked (l— +d) bulk liquid.
The low-frequency satellite peak in the stationary container at {1=0 arises from a spin-
wave mode that is localized in the core of the soliton, where the dipole-unlocked texture,
d+ +l produces an attractive potentlal The orientation of the soliton can be extracted
from the position of the peak:’ the value RZ;=0.613 at Q=0 is the signature of the
horizontal composite twist soliton. All measurements are for the magnetic field H parallel
to the z axis of the cylindrical container at a temperature 7=0.5 T, and pressure p=34.2
bar. The experimental technique is the same as in Ref. 5.

In previous experiments at 7~0.7-0.8 T, the twist soliton was swept out by rota-
tion, in contrast with the vertical soliton, which gives rise to the vortex sheet.” At a lower
temperature 7~0.5 T, the transverse soliton does not disappear under rotation and
remains in the container even when vortices appear. The change in the soliton structure
under rotation is reflected in the dependence of RZ,, on the angular velocity () of rotation
in Fig. 3. First, the frequency shift increases, reaching the maximal value R2,=0.665 at
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{2~0.11 rad/s and then decreases, when vortex lmes start to nucleate ThlS is the result of
interaction of the soliton with the counterflow v,—v,, where v, and v, =) X7 are the
superfluid and normal velocities, respectively.

In the acceleration—deceleration cycle of {2 in Fig. 3 four different phases are ob-
served: (1) At first, when Q is below the critical velocity, {.~0. 13 rad/s, of vortex
nucleation, there are no vortices, and v =0. The counterflow v v = —Q r orients l
parallel or antiparallel to the counterﬂow far from the soliton. Thus the total change of i
across the soliton is 180°. The orientational interaction of the counterflow with  leads to
continuously shrinking width of the soliton wall and the dimension of the attractive
potential for the spin-waves decreases. As a result, the spin-wave bound state is shifted
closer to the continuum and R2, increases with ().

(2) In the second phase, when 1>()., vortices begin to nucleate. These are the
nonsingular 47 vortices with a dipole-unlocked core,!” which give rise to a satellite peak
at R2,.x=0.22%0.01 (see Fig. 2). Simultaneously, R2, begins to decrease, because the
vorticity reduces the width of the counterflow region. This shows that when Q>},, a
cluster of vortices is formed. These vortices intersect the soliton (Fig. 1).

(3) After reaching an arbitrary maximum velocity (£,=0.26 rad/s in Fig. 3), we
begin to decelerate the cryostat. Now the number of vortices is conserved, while the
cluster expands and the counterflow decreases in width and in magnitude. As a result, RZ |
decreases further until the counterflow finally disappears and the cluster reaches the wall
of the container. Here the initial frequency shift of the soliton peak is restored.

(4) During further deceleration, the counterflow region is absent and R2; is nearly
constant. This means that vortices cross an otherwise undisturbed composite twist soliton.

All four stages of this hysteretic behavior of RZ(Q) can be reproduced theoretically
(the solid line in Fig. 3) if we assume that at low counterﬂow velocity the dependence
R2,(Q) is analytical: RZ,(€)=RZ(0)+const(v,~v,)?), where the average is over the
rotating container. From thlS experiment we conclude that an intersection with continuous
{nonsingular) structure exists between a vortex line and a twist soliton. It can be formed
reproducibly and exists for an indefinite time as a metastable object in the rotating
container.

Next we discuss the topology of the intersection of the twist soliton with the 47
vortex line along z. In the continuous 4 vortex the vorticity is produced by the nonsin-
gular | texture, which can be represented by a bound pair of Mermin-Ho (MH) 27
vortices, one with a circular and the other with a hyperbolic projection of 1in the Xy
plane (see Ref. 18, review,!” and Fig. 4). The i texture within the vortex produces the
§2 82 mapping with index 1: the distribution of 1 over the cross section of circular and
hyperbolic MH vortices in the xy plane covers the north and south hemispheres of the S 2
sphere I- =1, respectively. The corresponding index of the d texture is 0, because dis
kept in the xy plane by an axial magnetic field. In the vortex core fand d arg therefore
unlocked. (In a lattice of 447 vortices one has periodic boundary conditions for L. Thus the
I’ texture in a unit cell of the vortex lattice produces a mapping of the 2D torus, T°—S?,
with the index 1. The whole A -phase order parameter is not periodic; it is invariant under
“magnetic” translations: translations which are accompanied by a gauge transformation.
As a result, the counterflow v, — X7 is periodic in the vortex lattice.)
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FIG. 4. Two ways for the vortex to cross the soliton. (a) Intersection with the topological indices m=1, k=1.
C; and C| are loci of points, where 1 is up and down, respectively. With two parallel twist solitons this texture
can be duplicated, and the two loops form a link. (b} Intersection with indices m=1, k=0. The same linking
occurs between the loop C, for which =1, and a neighboring loop with constant 1#32.

What happens when such a vortex crosses the soliton? Far from the vortex, i.e., in a
pure soliton, 1 is oriented in the transverse plane and its orientation depends on the
vertical coordinate z: This serves as an asymptote for the intersection point,
P asymprore(2) =% €0s a(z) + ¥ sin a(z). If the vortices form a lattice, then & must change
exactly by 7 when crossing the twist soliton, because far from the soliton the vortex
lattice fixes I parallel or antiparallel to the lattice anisotropy axis.'” The examples of
topologically different intersections with given asymptotes far from the intersection can
be embedded in the following general series with two integer parameters m and k, which
will be later related to the topological invariants:

L, (2,F) =Um(2)I( =, Uk(2)7). (1)

Here f is the in-plane coordinate, counted, say, from the “center of mass” of the vortex
pair; I(—, r) is the texture within the 47 vortex far from the soliton; and U(z) is the
z-dependent matrix, which rotates 1 within the twist soliton:
cos a(z) sin a(z) O
U(z)=| —sin a(z) cosa(z) 0], (2)
0 0 1
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The index m shows an algebraic sum of the solitons, while & marks two competing
intersections shown in Figs. 4a and 4b. They have, respectively, m=1, k=1, and m=1,
k=0 configurations. In the m=1, k=1 configuration the circular and hyperbolic MH
vortices exchange places after crossing the soliton, creating an entanglement, but do not
change their orientation with respect to lgyroi0- In contrast, in the m=1, k=0 configu-
ration the MH vortices do not interchange, but each MH vortex is twisted separately. As
a result, the orientation of the whole 47 vortex with respect t0 Iy myoe Changes to the
opposite configuration. This means that the parity of the 47 vortex changes after cross-
ing: the w™ vortex transforms to its mirror-reflected w~ modification in the notation of
Ref. 17.

This topological difference between the two textures can be described in terms of the
linking numbers which usually characterize the 3 homotopy.'® These linking numbers
are related to the indices m and k. To visualize this situation, let us consider two parallel
identical solitons. This corresponds to m=2 and even k in Eq. (1). After crossing two
solitons the 411 vortex returns to its initial I(—, r) texture. This means that the cylinder
Vo=T 2 X (—o<z<+w), which crosses two solitons, represents the 3D torus, V,=T 3,
Thus the 1 texture in the cylinder produces the mapping 7°—S2. This torus homotopy has
no natural group structure,”’ but can be characterized, nevertheless, by some integers.

Let us consider a loop C formed by the loci in space in which the field 1 has a
constant value. th us use two values of I: one of them, 1;, is on thg northernAhemisphere
and another one, 1, is on the southern hemisphere. For example, lT=i and 1 1=—i. The
corresponding loops are C; and C|. Let us introduce the linking number [k(C,C)),
which counts how often C; passes through C,. We find that it depends only on ; i.e.,
lk(C,C|)=1 for the duplicated intersection with indices m=1, k=1 in Fig. 4a and
lk(C,C)=0 for the duplicated intersection with indices m=1, k=0 in Fig. 4b.

Now let use consider two lqops formed by loci, where i takes two values on the
same hemisphere (note that the I texture in the circular and hyperbolic MH vortices
covers the north and south hemispheres, respectively). The linking number of the two
loops of type C; will then be Ik(C;,C;)=—1k(C,C|)=1 for the duplicated m=1,
k=0 texture.

Let us express these integers in terms of analytical topological invariants. The Hopf
index H, which is expressed in terms of the superfluid velocity’

1

H=7z ),

| dri, - Vxd,, G)
is not quantized in a given (open) geometry [here v = (x/2 77)61662, Y=¢,+i¢, is the
complex vector order parameter with &, X€&,=1; x=mnh/m, is the circulation quantum in
superfluid 3He]. This occurs because the periodic boundary conditions are applied only
to 1 and v,—v,, but not to the whole order parameter: W(x,y,+) is not necessarily
equal to W(x,y,— ). This corresponds to a nonzero phase difference across the soliton,
which is typical of Josephson contacts. The calculation of H for two identical solitons,
i.e., for textures with double values of m and &, gives

1
H=—k+—; dr-uvg, “)
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where the last term corresponds to the phase difference and is expressed in terms of the
circulation of v, along the vertical path C* on the lateral boundary of the cylinder.
Equation (4) means that the intersections in Fig. 4a with the nonzero k=1 realizes the
nontrivial 1, topology.

For the intersections in Fig. 4b the index k=0, but the nontrivial topology of linking
manifests itself in another analytical invariant, which is related to m. For the duplicated
texture the circulation of v, along the loop C - differs by one quantum from the calibrat-
ing circulation along C*:

(L—L*\)d;@:m 5)

Correspondingly, (f¢ = Jex)dr - v, = —x.

Which of the two types of intersection occurs depends on the particular features of
the hydrodynamic energy, and therefore on the temperature. A contribution to the energy
difference between them comes from the spontaneous axial supercurrent along the vortex
core caused by broken parity of the w-vortex.'” In the texture with m=k=1, the vortex
is in a single, say, w” state; therefore, the axial current does not change direction on
crossing the soliton. On the other hand, in the texture with m=1, k=0 the axial current
is opposite for the w " and w™ vortices on different sides of the solitons. The conservation
law for the current requires that the intersection point should be a source or sink for the
mass current which flows from the vortices via the intersection point into the bulk liquid.
The flow energy can make the m=k=1 texture more advantageous. At present, we
cannot distinguish between the two textures theoretically or experimentally.

In conclusion, the intersection of two continuous objects of different
dimensionalities-—the nonsingular 1D vortex and the topological 2D soliton—is experi-
mentally concluded to exist. Two competing types of intersection, which have different
indices of 7r; homotopy, are described.
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