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Steady-state configurations of molecules of the DNA type are analyzed. The
elastic anisotropy of the molecules is taken into account, as are the existence of
spontaneously deformed states, external factors, and the interactions of

various types of deformations. Depending on the values of the parameters
characterizing these effects, various types of steady-state structures are found:
ordered and slightly deformed helices, superhelices which form *‘windings”

of an original helix on surfaces of some sort, closed and periodic or quasiperiodic
configurations, disordered balls, and structures with intermittent ordered and
disordered regions. © 1994 American Institute of Physics.

1. The DNA molecule is an extremely complicated entity which stores biological
information in living organisms. Under normal conditions, the DNA molecule is a linear
elastic chain containing 107 elements in a strictly fixed order. These elements form a
helicoidal structure with a period ~36 A . The linear molecule as a whole, on the other
hand, is characterized by a persistent length on the order of 500 A . Since there are two
very different length scales for twisting and bending deformations of a DNA molecule,
there are some extremely complicated steady-state configurations. Marko and Siggia'?
have recently studied configurations with constant curvature and twisting. They demon-
strated that the interaction of bending and rotational deformations plays an important
role.

In the present letter we analyze elastic properties of a DNA molecule in a general
form, incorporating an anisotropy, spontaneous deformations, external agents, and cross
terms in the elastic energy, which describe the interactions of different types of deforma-
tions.

The properties and structure of a DNA molecule are governed by more than its
elastic energy; important roles are also played by the entropy, external conditions, etc.
Nevertheless, any realistic model of DNA must include, as a first step, a study of the
elastic energy of the molecule and an analysis of steady-state and equilibrium structures.
Even more incentive to study steady states of an elastically anisotropic, spontaneously
deformed filament arises from the circumstance that even in such a simple model it is
possible to find some extremely nontrivial configurations, which have not been discussed
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previously in the scientific literature, to the best of our knowledge.

2. Following Refs. 1 and 2, we treat the axis around which the double helix of a
molecule of the DNA type is wound, with a pitch on the order of 36 A , as an elastic
filament or rod. To describe deformations of the thin elastic rod (or filament) used to
model the DNA molecule, we use the vector @, which describes the rotation of the
coordinate axes as we move along the filament. For this purpose we introduce a local
coordinate system v,, v,, V3, where the vector v, is tangent to the r(¢) curve, which
specifies the configuration of the axis of the molecule (¢ is the coordinate along the
curve). The vectors v, and v; are directed along the axes of the principal deformations of
the elastic rod,3 in such a manner that we have

d
—Tr, V;XV

ViT s j

=5, (1)
The change in the local coordinate system along the filament or rod is described by the
equation3

d
The elastic energy of an anisotropic rod can be written as a series expansion in @ (Ref.
3). The leading terms of this expansion are

3 3
1
E= 2 Ea,Ja),w]-i-z b,-w,—. (3)

ij=1 i=1

The matrix a;; is the symmetric matrix of elastic moduli of the rod; the vector b describes
spontaneous deformation of the steady-state configuration of the molecule. The physical
cause of a spontaneous deformation might be, for example, the adsorption of the DNA
molecule on nucleosomes (which are usually modeled by a cylindrical surface).

A symmetry analysis carried out in Ref. 1 showed that only the components a,,,
a5, di3, and a3 are nonvanishing in the case of the DNA molecule. The energy in (3)
under consideration here makes it possible to describe some situations, of interest from
the physical standpoint, involving adsorption of DNA and the behavior of molecules in
external fields. That approach furthermore has the technical advantage that we can for-
mulate an equation which describes the change in the local coordinate system in (2) as a
chiral-field theory (see Chap. 8 in Ref. 4), as we have done in the case of membranes.’

We introduce the matrix
Xy=(v). @

The chiral current constructed from this matrix is

d
xx . (5)

J=-

To satisfy kinematic condition (1), the matrix J must have the structure
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3
kaz_E Wi€ikj, (6)
i=1

where €,; if the Levi-Civita density.

An arbitrary infinitesimal variation of the coordinate system is specified by the
transformation

X—RX, R=I+5¢,
where
3
(86);= 2 Sdiein,
i=1

and 8¢ is the matrix of an infinitely small rotation, specified by the vector d¢. Corre-
spondingly, in accordance with (5), we write

d
W= 0¢—[J,0¢]=Vie, @)

where —[,] is a commutator, and V is the covariant derivative (cf. the corresponding
procedure for membranes in Ref. 5).

Using (5) and (6), we can express the variation dw in terms of the covariant deriva-
tive 8¢,

Sw=V e,

and we can write an Euler—Lagrange equation for the energy functional # = [d¢E in the
form

s
(9(1)[ o

At this point, it is convenient to introduce the moment M, which is the conjugate of
the vector w:

3
M]-=—_=E a;w+b;. (8)

By virtue of the definition of the covariant derivative, (7), the equation describing a
steady-state solution for the moment M is

d

— M—-wXM=0. 9

¢ 0 (9)
Determining the equilibrium conﬁg/uration of a thin, elastically anisotropic rod thus

reduces to solving two problems. First, we need to solve system of equations (8), (9),

which is a purely mechanical and (see the discussion below) Hamiltonian system. As a

result, we find a steady-state distribution of the coordinate system v;. In the second step
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FIG. 1.

we can then reconstruct the curve itself, using the definition of the tangent vector [see
(1)]. Before we present the results found in this manner, we need to make two comments.

» Using the definition of the moment in (8), we can rewrite the energy density in
terms of M:

3

At the same time, it is easy to see that if we wish to obtain the correct “equation of
motion”’ for M by the Poisson-brackets method, the Hamiltonian of the system must be of
the form

3

1
H=5 2 (a™)y(M;=b)(M;=b)).
ij=1

The energy density £ and the Hamiltonian H are not the same (!). The difference stems
from the existence of linear terms in energy expansion (3). Those terms describe spon-
taneous deformations of the DNA molecule. It should be kept in mind that H is an
integral of the equations describing the steady-state configurations of the rod. The prob-
lem formulated in this manner is a completely integrable Hamiltonian system with Pois-
son brackets for the components of M and v;, i=1,2,3, specified by the equations

M M}=—€uM, {M;,(v));}=— €V,
and with Kirchhoff integrals

H, M? Mxv;, i=123. (10
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FIG. 2.

* The matrix a; is symmetric, so it can obviously be put in diagonal form. How-
ever, the physical state of the molecule fixes the spontaneous deformation [i.e., the vector
b and the initial value M(¢=0)]. It is thus convenient to specify the vectors b and M (0);
in this case the matrix a;, has off-diagonal elements. The comment above seems quite
natural in a geometric sense, since a steady-state configuration of the molecule is unam-
biguously determined by the intersection of the ‘“‘sphere” M?=const and the elastic
ellipsoid H = const, with a center displaced by a vector b. It was shown in Refs. 1 and 2
that only the off-diagonal element a, is nonzero for a DNA molecule under normal
conditions. This is the case which we are looking at in the present letter.

We have solved system of equations (8), (9) by means of a fourth-order Adams
algorithm. The accuracy of the calculations was monitored on the basis of the values of
the Kirchhoff integrals mentioned above. The error is 10~ for a computation duration of
several thousand steps for regular configurations of the rod, while it is 107> for helix—
ball transitions (more on this below). We studied the behavior of the steady states of the
rod as a function of various configurations of the matrix a;; and of the vector b (Figs.
1--5). Postponing a detailed description of these structures to a separate paper, we simply
list a few illustrative examples.

1. Ordered or weakly deformed helices are found in the case of a diagonal matrix
a;, and a zero vector b.

2. If we introduce even a small value of @,,, we find a large-scale nonuniformity: a
superhelix [Fig. 1 shows the steady-state configuration of the axis of a DNA
molecule in the case b=0; a;,=0.1a;; M=(0.1,0,0.7)]. The superhelix is char-
acterized by two pitches, large and small ones, L and L,. Each is considerably
larger than the pitch of the double helix of the DNA molecule, ~36 A,

FIG. 3.
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FIG. 4.

3. The steady-state configuration of the molecule can be characterized as a “wind-

ing” of a line around a closed surface. Figure 2 shows an example of such a
winding on a torus, b=(0.1,0,0).

. When an elastic anisotropy is introduced, structures of the type in (2) and (3)
exhibit alternating regions with an ordered or slightly deformed helix. Figure 3
shows an example of such a structure, Finally, at values of the off-diagonal
element a,, which are not small, or at values of b, which are large, there is a
helix-ball transition, and disordered structures are found (Fig. 4).

5. A closed configuration is shown in Fig. 5.
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