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The diffraction slope of the generalized BFKL pomeron amplitude was found to
have a conventional Regge growth B(s)=B(0)+2ay log(s). This proves

that the generalized BFKL pomeron is described by the moving j-plane singularity.
The slope ap is estimated in terms of the correlation radius for the perturbative
gluons. © 1994 American Institute of Physics.

1. Introduction

Whether the QCD pomeron is described by the fixed or moving singularity in the
complex j plane remains one of the topical issues. The purpose of this letter is to prove
that the generalized BFKL pomeron'™ is a moving cut. We present the first direct cal-
culation of the slope ajp for the pomeron trajectory.

The early works on the BFKL (Balitskii-Fadin-Kuraev-Lipatov°) pomeron focused
on the idealized scaling regime with fixed strong coupling ag=const and infinite gluon
correlation radius R . In this regime, the BFKL pomeron is described by a fixed cut in the
complex angular momentum plane —o<j<ap(0)=1+A;p. However, because of the dif-
fusion property of the Green’s function of the scaling BFKL equation,” the scaling regime
is not self-consistent. Recently, considerable progress has been made in the understanding
of the BFKL pomeron in the framework of the dipole cross-section representation intro-
duced in Ref. 6. In our previous papers' ™ we derived the generalized BFKL equation for
the dipole cross section in a realistic model with the running (and freezing) strong cou-
pling ag(r) and with the finite correlation radius R of the perturbative gluons. While the
property of the cut in the j plane is retained, we found that the running ag(r) and the
finite R, have a strong effect on the spectrum and solutions of our generalized BFKL
equation. The crucial observation is that the intercept Ajp and the asymptotic behavior of
the dipole cross section are controlled by interactions at the dipole of size r~R .. We also
found that the recovery of the conventional multiperipheral pattern is likely at asymptotic
energies, which suggests a Regge growth of the diffraction cone. In this letter we confirm
the lat;er observation and show that indeed the pomeron trajectory has a finite slope,
apeRL.

1-4 ¢

The starting point of our analysis is the generalization of our BFKL equation ™" to
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the profile function of the dipole cross section I'(r,b). Defining the impact parameter b
with respect to the center of the parent g—g dipole, and repeating the derivation,'"™* we

obtain
o' (¢,r,b)

E = %ol (& r,b)

2
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§’p2ab+§ [ 4l +F(§:pl’b+5p2 —F(§,r,b)], (1)
where p,=p,—r, the arguments of the running QCD charge gg(r)= V4 moag(r) are
R;=min{r,p;}, K;(x) is the generalized Bessel function, and R_.=1/u is the correla-
tion radius for the perturbative gluons. Here we use the standard definition of the profile

function when

A(s,t)=2is f d’b exp(—igb)I'(b),

and the dipole cross section is a{(£r)=2f d*bT(£,r,b). We shall discuss the reduction of
(2) to the equation for the diffraction slope

1
BEN =30 =MENIO(En, NEN= [ DB T(Erb)

The diffraction slope for the dipole of size r evidently contains a purely geometrical
contribution (1/8)r?, which comes from the elastic form factor of the dipole. It is there-
fore more convenient to consider {(&r)=\(§, r)—3 r2(r( £,r), whose equation takes the
form

an(&,r)

3 2
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X4 n(&:p1)+ n(&,p2)~ n(p,r)+%(pf+p§—r2)[0(pz,§)+0(p1,§)]]
=Z@n(&r)+B&r), (2)
where the inhomogeneous terms are
B&r)=2@0(&r)= . 3J d*py pg; gS(Rl)Kl(ﬂ(;pl)&—gS(RZ)Kl(:‘LGPZ)BE 2
64 P1 P2
X(pi+p3=r)o(p2, )+ a(p1, ). 3)

Here the crucial point is that the homogeneous Eq. (2) is precisely our generalized BFKL
equation for the dipole cross section

da(é,r)
dé

=ZQoa(€,r), 4)
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which enables us to prove on the generic grounds that ajp=3dB(&,r)/d£#0.

The proof goes as follows: In Refs. 3 and 4 we have shown that the generalized
BFKL operator .% has a continuous spectrum, which corresponds to the cut in the j
plane. Let —~o<py<wc be the “wave number” which labels the eigenfunctions
E(v,r)explA(v)€] in Eq. (4) with the eigenvalue A(v). For guidance, in the scaling limit
ag=const and R,— we have E(v,r)=rexpliviog(r?)]=ap(r)explivlog(r*)] with the
orthogonality condition®~>

1 (dlog(r?) | s
5(11—”’)_% mE (V5r)E(M7r)’ ()

and v is the wave number of the plane waves in the log(r®) space. The properties of the
eigenfunctions E(v,r) in the case of the running a¢(r) and the finite R are discussed in
Refs. 3, 4, and 7.

Now we proceed with the solution of the inhomogeneous equation (2). If G(v,r)
=ZQE(v,r)=[ dwg(v,w)E(w,r), we can write the inhomogeneous term (3) as fol-
lows:

B(&,r)=2£@0(&r)= f dVE(V,r)f dwf(w)g(w,v)explA(w)§]. (6)
We search for a solution of the form 71&, r)= [ dvt(&,v)E(v,r)exp[A(v)£]. Making use
of the property of the eigenfunctions Z'QFE(v,r)=A(v)E(v,r), we find

a7(§,v)
o€

eXP[A(V)§]=de fw)g(w,v)exp[A(w)¢] ™

and

¢
n(&r)= J dvr(£€=0,v)E(v,r)exp[A(v)£]+ fo dg’f dv E(v,r)

Xexpl A (€] [ aw fon)g(m el A0 E ) ®)

Here 7(£=0,v) describes a solution of the homogeneous equation (2) and is determined
by the initial condition 7(£=0,r).

The singularity structure of g(w, v) can be found by considering the large-r behavior
of G(v,r)=#RE(v,r). Because of the exponential decrease of the Bessel function
K (x)xexp(—x), the integration in (3) is dominated by the two contributions from
PR, pr=~r, ;,=<R_, p;=~r. For definiteness, consider the former case. Note that in this
regime we have (p}+ps—r®)~p{ and E(v,p,)~E(v,r), which gives the contribution of
the form 2G E(v,r) to £QFE(v,r). Evidently, it corresponds to the singular term
g1(w,v)=2G8(w— v). The contribution from the term apiE( v,p,) to FRE(v,r) does
not depend on r at large r and corresponds to g,(w,v)=G,(v)8(w). In addition to these
singular terms, g(w,v) also has a smooth component g;(w,v).

Evidently, the 2G,8(w— v) component of g(w,v) gives contribution to 7(&7) of
the form
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FIG. 1. The slope of the pomeron trajectory
afp as a function of the inverse correlation ra-
dius u;=1/R, for the perturbative gluons.
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which gives preccisely the Regge growth of the diffraction slope B(¢,r) with ap=G;.
We have an explicit estimate for the slope of the pomeron trajectory

! 3 2 2 2p-2 3 2
o~ Te 2| 4 v as(r)ugr Kl(.ucr)o‘m R; as(R.). (10)
The effect of g,(w,v)=G,(v,w) can be evaluated making use of the explicit form of
E(v,r) (Refs. 3, 4, and 7). It also contributes to the slope of the pomeron trajectory
op~G(0)~G;. The smooth part of g(w,v) does not contribute to the slope of the
pomeron frajectory.

In the numerical calculation of the slope aqp we start with the dipole—dipole cross
section and the corresponding diffraction slope, as described in Refs. 5 and 6. We calcu-
late the £ dependence of the dipole cross section o(£r) and of the diffraction slope
B(&,r) and verify that, as £—, the effective intercept A.4(£ r)=3log o{§,r)/d¢ and the
effective slope a,€,r)=0B(&,r)/d€ tend to the limiting values Ap and agp, respec-
tively, which are independent of the size of the projectile and target color dipoles. We
take the running coupling with the infrared freezing®* ag(r)<a{/”=0.82. The depen-
dence of the slope afp on ue=1/R_ is shown in Fig. 1. The simple estimate (10) is close
to these numerical results.

In summary, we have shown that the generalized BFKL pomeron' ™ is the moving
cut in the complex angular momentum plane. We derived a simple analytical estimate
(10) for the slope agp of the pomeron trajectory and found the dependence of the slope on
the gluon correlation radius by an accurate numerical solution of our generalized BFKL
equation (2) for the diffraction slope.
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