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A study is made of the effect of a substitutional disorder on the electrostatic
energy of a multicomponent icosahedral quasicrystal whose structure is a decorated
Amman—McKay network. In the absence of a short-range order, taking an
average of fluctuations of the ion charges leads to an average valence in the final
expression for the electrostatic energy. The general analytic expression

derived here is convenient for finding the Madelung constant of decorated
Amman—McKay networks. © 1994 American Institute of Physics.

An important problem in the physics of quasicrystals is to identify the reasons for
the stability of quasiperiodic phases. One approach to the solution of this problem is to
calculate the binding energies of quasicrystal structures, which are dominated by the
electrostatic energy and the band energy. Smith and Ashcroft have calculated the electro-
static energy of a one-component icosahedral quasicrystal with a structure based on a
primitive (undecorated) Amman—McKay network, found as the result of a “paving” of
the space with two types of rhombohedra: acute and obtuse, with atoms at their
vertices.* However, the structures of real quasicrystals are described poorly by this
model, and calculating the electrostatic energy of multicomponent quasiperiodic phases is
not a trivial matter. A more general structural model of a real icosahedral quasiperiodic is
a decorated Amman—McKay network with a substitutional disorder within the various
“sublattices™ (the atoms of the different species can lie not only at vertices of the rhom-
bohedra but also on their edges, on their faces, and in their “interiors”; each set of these
positions is characterized by a substitutional disorder).®> A substitutional disorder for a
crystalline configuration does not, as we know, give rise to an additional component of
the electrostatic energy, and the average valence of the ions figures in the final
expression.* The “sparseness” of the reciprocal lattice of a crystal was utilized to find
this result in Ref. 4, because of an incorrect averaging of charge fluctuations. Actually,
the reciprocal lattice of an icosahedral quasicrystal is dense everywhere,” so the formal
use of the approach of Ref. 4 may lead to incorrect results. Qur purpose in the present
letter is to examine the effect of a substitutional disorder on the electrostatic energy of an
icosahedral quasicrystal, taking account of particular structural features of the reciprocal
lattice of a decorated Amman—McKay network, along with an estimate of the Madelung
constant a,, for several structural models of an icosahedral quasicrystal. The latter ap-
proach leads to a more reliable conclusion regarding the role played by the band energy
in the problem of the stability of an icosahedral quasicrystal.

For simplicity we consider a decorated Amman—McKay network at whose vertices
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there are ions of two species, A and B, which are “immersed” in a negatively charged
uniform electron background. The structure-dependent part of the electrostatic energy is
given by
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where N is the number of ions in the quasicrystal, CRM are occupation numbers

E*= (1

(CR"=1 if there is an ion of species A at the vertex with radius vector Ry; C R”=O is
there is an ion of species B there), and Z, and Zjy are the valences of ions A and B,
respectively.

Formally, we can rewrite expression (1) as follows:
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where 7 is the Ewald parameter,
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and C is the concentration of the A ions.
After a Poisson transformation, the second term in (2) becomes
e’ 3
20207 f(w)d qig(qpP(—qp).

Evaluating the corresponding Fourier transforms, we can write
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where
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1 1
S(a)= 52 exp(igRy), Cq=32 Drexp(iqiRy),
Ry Ry
Z2=Cz22+(1-C)Z3.

Taking an average of (3) over occupation numbers, we find, in the absence of a short-
range order,
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where Z=CZ,+(1-C)Zg.
It can be shown® that, for an infinite (N— o) icosahedral quasicrystal with a basis
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where p(qy) is a Fourier transform of the density of the icosahedral quasicrystal, and a is
the lattice constant of the six-dimensional hyperlattice, from which a projection is made
for the purpose of obtaining the decorated Amman—McKay network, we have

G.(Q)=2 expliQpry Jni(Qu),
k

Here £ is the index of the “sublattice” of the decorated Amman—McKay network, Q“ and
Q, are the parallel and perpendicular components of the reciprocal-lattice vector Q of
the 6D crystal, Iy, is the parallel component of the radius vector of the basis of the 6D

hyperlattice, and n,(Q,) is a weight factor—the Fourier transform of the form function
for the kth sublattice of the decorated Amman—McKay network.’

Expression (4) then becomes
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where vy is the average volume per ion [vy= (a®/Z,V,N,)],

G,(Q)
VN’

L(Q)=

V, 1s the volume of the shape-function polyhedron for the kth sublattice of the decorated
Amman-McKay network, and N, is the decoration of the kth sublattice (N,=1 if the kth
sublattice is occupied; N, =0 if it is vacant).

After the standard procedure of incorporating the structure-independent contribu-
tions to the electrostatic energy, we find
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Again using the approximation which we used in going from (4) to (5), we can put the
latter expression in the form
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where ng is the frequency at which vectors of a given length ]Rﬂl are “meetable” in a
decorated Amman—McKay network:

N
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where Nyg | is the number of vectors of length IRy|.
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It can be seen from expression (7) that in the case of a substitutional disorder, for the
quasiperiodic structure under consideration here, we find an expression for the electro-
static energy which is similar to the Ewald expression, which includes an average valence
of the ions. This result applies to both crystalline and quasicrystalline structures, regard-
less of how “sparse” the reciprocal lattice is. This approach covers a fairly wide range of
icosahedral models based on the decoration of Amman—McKay networks, the only ex-
ceptions being models which have a short-range order within quasicrystal configurations.

The analytic expression derived for E., can be used to calculate the electrostatic
energy of any quasicrystal configuration with a substitutional disorder. This expression
can easily be generalized to the case of a quasiperiodic structure with a substitutional
disorder within the different sublattices of the decorated Amman—McKay network. It can
also be used to calculate Madelung constants for various quasilattices. As an example we
will estimate the Madelung constant for three quasicrystal structures (for estimates of
n|g, We use a fragment of an Amman—McKay network consisting of 6291 atoms at the

vertices of rhombohedra): a},=1.66 (the vertices of the thombohedra of the network are
occupied), a},=1.56 (the middles of the edges of the rhombohedra of the network are
occupied), and a;=1.55 (both the vertices and the middles of the edges of the rthombo-
hedral of the network are occupied). The Madelung constant of these quasilattices is
considerably lower than those of typical close-packed crystal structures ( a3~ 1.79). This
circumstance, which can be assumed to be a general property of decorated Amman—
McKay networks, evidently indicates that the band energy plays an important role in their
stability.

The approach taken in this letter can also be taken for quasicrystals with a symmetry
other than icosahedral.
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