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A general approach to the calculation of the momentum matrix elements in the
envelope function approximation is presented. The contribution of the
anisotropy is shown for the first time to contribute to the normal incidence
absorption in the p-type quantum wells. The present model also unifies the
description of optical absorption in the n- and p-type quantum

wells. © 1994 American Institute of Physics.

I. INTRODUCTION

The possibility of normal-incidence absorption in p-type quantum wells was shown
to be possible after Chang and James' (CJ) derived an expression for the momentum
matrix elements for intrasubband transitions in the p-type quantum wells (QW) on the
basis of the envelope-function approximation (EFA). This expression is extended here to
the case of the transitions between states which penetrate strongly into the barrier and
which involve strong conduction-valence band mixing. These transitions are important
for many small band gap and type-II superlattices. Finally, a very general expression for
momentum matrix elements in the k-p theory is derived and then applied to obtain
expressions for the momentum matrix elements for quantum wells.

In Sec. II, following the approach of CJ, we derive the expression for the momentum
matrix elements and nontrivially extend to the case of the wave function penetration into
the barrier. In Sec. III we show that this expression can be derived from the second-order
k-p Hamiltonian itself.

il. EFA THEORY OF MOMENTUM MATRIX ELEMENTS

In the EFA, the total wave function for the subband N as a function of the parallel
wave vector K| can be written as a sum of the products of the transformed Kohn-
Luttinger wave functions® |uk) and the corresponding envelope function amplitudes
F u(N kﬂ,kz) as follows:

setA

INk)=2 F,(Nk,k,)|uk), (1)
ok,

where the sum is taken over the near set of states A in the Lowdin’s sense.® The trans-
formed Kohn—Luttinger wave function is given by*

‘ Ak) <
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in terms of the Bloch wave functions uﬁ(r) at the center of the Brillouin zone, where the
set B includes the far-removed bands. For the quantum wells, the vector Kk in each part of
the structure (the well or the barrier) is given by k=k"+k22, where k, are the solutions
of the k-p the secular equation |H (kpk)—E |=0, and H is the k-p Hamiltonian of order
K. There are 2K solutions for the coefﬁc1ent k,(Kk,E), which are wave vector- and
energy-dependent and, in general, complex.’ A distinguishing feature of the present deri-
vation is that the coefficients k,(kj,E) are treated as complex coefficients, which is the
usual situation in the barrier material and for ky#0 in the well material.

The momentum matrix element between two states | Nk and |[Mk) is given by

ﬁ R = * = ' h 3 rpr
Ny = &p Mk )= E FNkpks) Fy (Mg, k)| v 2= €'k’ ) (3)

where € is the polarization of the incident light. Because of the periodicity in the plane
perpendicular to the growth direction and to the smallness of the photon momentum, the
parallel wave vectors for the initial and final states are the same. As a result, k, and k,
differ from each other because, in general as a result of photon absorption, they refer to
states at different energies, E y(k)) #E y(ky), ie., {k(k},Ey)}# {k,(kj,Ep)}, and be-
cause the momentum in the growth direction is not conserved. Therefore k#k'.

Substituting Eq. (2) into Eq. (3), we can write the momentum matrix element in the
form

Ao h? - - * 3
) ey =) 3 [ B k)

d _ *
+2 &2 sz[—i—;i;F,(Nku,z)]
XD¥ (2)F, (Mk",z)+2 2 f dzF (Nkj,z)*

d
xD¥ (Z){ - (Mkﬂ,Z)J )

where D are the coefficients of the second-order terms in the k-p Hamiltonian.* Unless
the envelope functions vanish at the well boundaries, the second and third integrals given
above are not equal and, because D o F D* . the last two integrals cannot be simply
combined. However, the second and thlrd integrals in Eq. (4) can be integrated by parts
and the two results added and then divided by two, yielding
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2 - .
Mku>=(r—n;) &2 U dzF (NKk,2)*P,, (K, 2)F, (Mk,z)

’
vy

o

1 L ' 7 (Mk
+§f dz _I-EFV(NI(“,Z) pr’(k”az)FV( ,,,Z)

1 - d .
+§ J dZFV(Nk“,,Z)*QVV'(kﬂ’z) [—l E;Fv’(Mkﬂ,Z)” . (5)

In terms of the band parameters P and Q defined in Ref. 1 for the 4X4 EFA model, Eq.
(5) differs from the corresponding Eq. (AS) of CJ because of the presence of two, rather
than one, terms multiplying the quantity Q. The matrices Q,, and P, for the 8 X8 model
are listed in another publication.

Note that for the 4X4 case treated as CJ, our respective results in Ref. 6 are differ-
ent. In terms of the CJ parameters A |, A,, B, and C, these results are as follows:

eP €lx ey €z
Ay = Y19x ~ Y14y 0
A, — Y24« — Y24y 0
B 0 0 V3ys(igi+aqy)
C  —VB(ng—iviay) V3ivsq.+ 7:q,) 0
and

eQ fx &y ez

Ay 0 0 N

A, 0 0 2y,

B i3y, \3y; 0O

C 0 0 0.

Ignoring the sign differences due to the different choices of the phase of the basis
functions, the A, coefficient for €-Q and €|z is 27,, rather than y,. In addition, B and C
in Table 1 of CJ are larger by a factor of 2.

In order to illustrate the difference between the present expression, Eq. (5), and Eq.
(AS) of CJ, a numerical example is given in Table I. The differences for the selected
example can be as high as 10%. Moreover, Eq. (A5) violates the principle of microscopic
reversibility by as much as 20%. Lastly, it is possible to unify the description of light
absorption p- and n-type quantum wells. Since P and Q are ultimately derived from the
k-p Hamiltonian, Eq. (5) can be rewritten in transparent fashion
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TABLE 1. Comparison of the matrix elements using the formalism of equation (5) in the text and Eq. (AS) of
Chang and James' for important interband transitions for the case of a 50 A GaAs/Al.Ga,_,As, x=0.30,
quantum well. The calculation uses a 60:40 conduction-valence band offset ratio. Our 8 X8 EFA model yields
four bands at the center of the Brillouin zone (actually, k, =107 inverse Bohr radii): HH1=—23.06 meV,
LH1=-51.71 meV, HH2=—88.45 meV, and LH2 = —148.24 meV. The matrix elements are given in the units
of Rydberg.

[ Matrix Element | Present Formalism, Eq.(5) | Eq. A5 of Chang and James |
2 2 -2 =2
2 |Pey(HH1 — LH2)| 1.71-10 1.64 - 10
%lP,,,(LHz — HH1))? 1.71-1072 1.79 -102
=|P.(HH1 - HH2)]’ 2.76 - 1072 3.00-1072
=|P.(HH2 —» HH1)|’ 2.76 - 1072 2561072
= |P.y(LH1 — HH2)|? 2.20- 1072 2.00.107?
o= |Pey(HH2 — LHY)|? 2.20-1072 2.42.1072
=|P.(LH1 — LH2)} 6.68 102 6.36 - 1072
=|P.(LH2 — LH1)? 6.68 - 10~2 7.42.1072
h 6*H
A A nyv
<Nku. m P Mku> =& ? <Fu(NkN’z) Jkok Mt Puv

L1
2

1d\*¢H,, #H,,(14d
—_—— “+ P —
i dz) Jkok, okok, \i dz

Fv(Mkﬂ,z)> )

where the arrows indicate the direction in which the derivatives should be taken. The
second term is the dominant term in valence-to-conduction band transitions. In the single
band case (u=v=1), the first two terms lead to an overlap integral between the orthogo-
nal final function and the initial envelope function, and thus yield zero. The last term is
proportional to the inverse effective-mass tensor m;,', which can be exploited with a
proper orientation of the incident light with respect to the crystal axes. For valence
intersubband transitions in the 8 X8 model, in the normal incidence ( €,=0) and k”=0, the
last term couples light- and heavy-hole components of the initial and final states. This
contribution is possible cause of the presence of mixed k.k, and &k, terms in the
Hamiltonian, which points to the importance of anisotropy in the optical transitions. The
second term is important only if the initial and final hole states haves a significant
admixture of conduction-band states. The first term couples same-parity components of
the initial and final states away from the center of the Brillouin zone, which is important
for heavier-doped MQWs. The above argument unifies the description of the optical
absorption in n- and p-type heterostructures and points to the dominant effect of anisot-
ropy in both intervalence and interconduction subband transitions.
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. GENERAL DERIVATION OF THE EFA MOMENTUM MATRIX ELEMENT

Here we will show a conceptually simpler way of deriving the expressions for
momentum matrix elements in the envelop function approximation. The final expression
can be used to easily obtain the momentum matrix elements for quantum wires and
quantum dots.

In a bulk semiconductor the momentum matrix element between the states |Nk) and
|MK) can be written in terms of the derivative of the k-p Hamiltonian as follows:

h ) all ) (9H,,,,c(k)
m~06-PNM=2 F,(NK)* {e- —x

vy

] F,(MK). (7)

This is simply an application of the Hellman—Feynman theorem.”~® In principle, the sum
in Eq. (7) proceeds over all the bands at a band extremum, which is why the wave
function amplitudes F have no bar over them. In order to express the wave function in
terms of Kohn—Luttinger functions for set A only, as in Eq. (1), we must perform a
unitary transformation of the basis,'” which eliminates the coupling between sets A and B
in the infinite-dimensional k-p Hamiltonian H. After performing the indicated
transformation,’® it is easy to show that the momentum matrix element up to terms of
order k is given by

A

fi . 6H (k) -
<Nkl—— é-p‘Mk> =2 FL(NK)*é e ® F . (MK), (8)
o Iy oK

where H denotes the transformed k- p Hamiltonian,

In the case of a quantum well, the wave functions are eigenstates of the parallel
momentum, kj, which is conserved in an optical transition. By analogy with Eq. (7), for
a QW the momentum matrix element becomes

all

> f dzF (NKj,2)*

~

oH . (k)
e — 27

- foky2). ©)

k,=—(d/dx)

Employing the unitary transformation of the basis functions, we finally obtain a
momentum operator of the form

R\ B2 1 1d 1d\*
ol 2l 230 r ) (10

mgy mgq 2
which agrees with Eq. (5), validates the newly derived Eq. (8), and gives credence to the
revision of the entries in the CJ’s table of results. Analogously, this technique can be
applied to quantum wires and quantum dots. The expressions thus obtained give new
insights into the selection rules that are operative in those structures. The complete
treatment is the subject of another paper.

The expression of Chang and James for the EFA momentum matrix elements for
intersubband transitions in p-type quantum wells was extended to the case of envelope
function penetration into the barrier in a way that satisfies the principle of microscopic
reversibility. Anisotropy was shown to be important for valence intersubband transitions.

755 JETP Lett., Vol. 60, No. 10, 25 Nov. 1994 F. Szmulowicz 755



Another approach to the problem of calculating momentum matrix elements was
then developed by showing that to order k these matrix elements can be obtained by
differentiating the transformed EFA Hamiltonian with respect to momentum. To the best
of my knowledge, this result has not been proved before or applied to the problem of
calculating the momentum matrix elements in band-gap engineered structures.

This work was performed under Air Force Contract F33615-91-C-5603 at the Ma-
terials Laboratory, Wright-Patterson Air Force Base.
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