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A theory, which describes the properties of K (def YTCP-type compounds, is
proposed.

PACS numbers: 71.30. + h

1. It is known that a one-dimensional metal with a half-filled zone is singled out in
the Peierls instability problem. As a result, quasi-one-dimensional compounds of the
type K, ;s Pt(CN),.1.5H,0, which will be referred to by the usual designation
K(def )TCP below, are of considerable interest. According to available data,' a com-
plete transfer of the valence electron charge of a potassium atom to the conducting Pt
chain occurs in these substances. As a result, there are 1.75 electrons for each Pt atom.
A complete unit cell contains 7 K atoms and four Pt atoms, which are located in three
nonequivalent positions; therefore, the true Brillouin zone is half-filled. According to
structural data,'> however, the distances a between any neighboring Pt atoms are the
same within an accuracy of 0.1%. This feature of the strucutre indicates that the
potential of the K* ions has a weak influence on the rigid Pt atom chains. If this weak
external modulation of the field of thé conducting chains is ignored, then the one-
dimensional unit cell will contain one Pt atom, and the corresponding Brillouin zone
will be 1/8 filled. The charge-density wave with the wave vector 2p, = 7/4a, which is
produced as a result of Peierls instability, is eight-fold commensurable and the proper-
ties of the system are indistinguishable from the properties of the gel model within an
accuracy of (4 /E:)>.> When the weak periodic field of the K* ions is taken into
account, we must expect the appearance of features that are characteristic of systems
with a half-filled zone. Analogous effects should also occur in other compounds such
as TTT,I; + 8 and TSeT,Cl. In this paper we shall examine the specific case of
K(def)TCP, since the Peierls theory is applicable to this compound.

2. We shall disregard the direct influence of the K* ions with wave vectors 4P,
and 8p on the electron spectrum and the interaction of the electrons with + 6p,-
phonons, since these effects are of the order of (4 /€.)* in smallness. We write the
Hamiltonian of the system in the form

N U
H=2§ C+C +2w b"‘b +Zl:——q—¢q¢;-K/4
p Vegog_ g,
U 8pg
+ d b, T K/ +5"—= Ch Coq by
Wg @Dg + K /4 ey P.q VN P M

Here C ' (C,) are the creation (annihilation) operators of electrons with quasimomen-
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tum p, £, is the electron energy measured from the chemical potential, 4 ; (b,) are the
creation (annililation) operators of phonons with momentum g, w, is the bare frequen-
cy of the phonons, ¢, = (@,,)"* (b, + b * ), g, is a matrix element of the electron—
phonon interaction, and U, is the Fourier component of the potential of the K* ions,
which, for specificity, we assume to be real and positive. Here U, =U_, = U, ¢4,
where K = 27/a.

Ignoring the long-wave fluctuations, which perturb the long-range order in a one-
dimensional system, we can assume that the ground state corresponds to static defor-
mations with wave vectors +2p, = + K /8 and + 6p, = + 3K /8:

* iX iX,
<¢K/8>=<¢—K/8>=¢l=l¢1|e ;<¢3K/s>=¢2=‘¢2"e ‘
¢S

To determine the equilibrium deformations, we must write the standard expres-
sion for the energy of the system (see, for example, Ref. 5); in this case it is a function
of both in the gel model case, and of the displacement phases y, and y,. Minimization
of the energy with respect to |@,|, |#,|, x, and y, defines the equilibrium values of
these quantities

g|¢10|=A=€FeXP(—1/)‘eﬁ‘ ): ’\eff 2)\(1+2U/(01),

3
‘¢20| =2U|¢’10 I /(0)1.(02)1/2, X10=i17/2, X20=¢TT/2,

where ¢ = gx 1655 15 Teal, A = g?/mv, a dimensionless electron—photon interaction
constant, v; is the Fermi velocity, U=Ug, = U, @, =0(+ K/8),
@, = o( + 3K /8), and 24 is the gap in the electron spectrum. We draw attention to
the fact that the effective interaction constant increases at the same time as the phase
of the equilibrium displacements is established—a property known to be characteristic
of a metal with a half-filled zone. It can also be seen that in addition to displacements
of the Pt atoms with wave vector K /8 = 2p,, strictive displacements ¢,, with wave
vector 3K /8 should be observed; the deformations ¢,, and ¢,, are opposite in phase.
The assumption that the influence of the field of the K* ions is weak means that the
small parameter of the theory is U /w, ; €1. Below all the values are calculated to first
order in (U/w,,;).

3. To investigate the dynamics of the system, let us consider small-amplitude,
long-wave deformations of the ground state:

¢o]. = (qul-ol + ni(x, r) ) exp [iX].(x,r)]',]' =1, 2.

The effective Lagrangian for the fields #;, and y; has the form
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For U =0 Eq. (4) becomes the Lagrangian of the Peierls system in the gel model.

If the phase deviations from the equilibrium values 8y; = y;, — x,» are small, then
the Lagrangian can be diagonalized by introducing the normal coordinates §; and 6,
and for A<1 we have

1 2U w?
< =—:o-1-<n1+(m1m2 W 772 & =—( 19, 1/2 Th)

2
|#l 6ol 20 ®
1= :I—BXI; 6, = o e (5><2 - 8Xx,).
The corresponding frequencies are
g (k)= (Aol +(2/3)u2k2)V2; g =, (1 -~ —Z—z );
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Thus, two low-lying modes £, and 8, exist in the system, where relative value,
determined by the ratio of the two small parameters U /w, and A of the theory, can be
arbitrary. It can also be seen that the mode 8,, like the Frohlich mode 8, is optically
active. However, the oscillator strengths for 6, are a factor of (U /w)? smaller than
those for 6,.

4. Let us examine the nonlinear excitations for large deviations of the phase from
the equilibrium values. Since the ground state of the system is degenerate with respect
to the sign of the phases (3), it may be possible to excite solutions in the system, which
connect the two equilibrium positions. The important part of the energy functional has
the form

Efy,} = l¢‘°|2 i Ydx ; k? = 4Uw, /u®
X1 f(x cos X +X x, K w,/u”. )
1
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The extremum of the functional (7) satisfies the equation
2X1’ + KZSinle =0,

where solution is
X, ==n/2 + 2arctan (e“%),

The soliton energy E, and its mass M, are

E 2 () 0,

S e — . M. -=E_/u% ®)
A m Cl S Su

The phase change in the soliton is + 7 and, consequently, it is a charged formation
having a charge of +e.

We note the following important fact. The applicability of the phase soliton the-
ory is restricted by the condition E, ~xv. €4 (large radius) and by the adiabatic crite-
rion n’u/v- <1, where n is the commensurability index. If we use the data of Ref. 3,
which identify the two low-lying modes with 6, and ¢,, specifically, @, =21 cm ™'
and o, =40 cm~', then it follows from (8) that E,/A =1/3 (in this case
U/w,=A2/16) and the soliton radius is rather large. Assuming that the adiabatic
criterion is satisfied (n = 2), we can say that for now K(def)TCP is apparently the
only compound in which the solitons are not destroyed by quantum fluctuations and
inhomogeneity and, therefore, are able to contribute to the conductivity. The conclu-
sion acounts for the two activation regimes with activation energies of E, and 4 in the
temperature dependence of the conductivity o(7").* Here the ratio 4 /E, =3, in accor-
dance with the previous estimate. At temperatures T < 80 Ko is determined by the
activation of solitons. In the slow rise region 80 K < T'< 200 K the soliton conductivity
which is saturated is the Frohlich conductivity with stripped pinning, while for
T>200 K the conductivity is determined by electron activation through the gap. The
two-order-of-magnitude change in ¢ in the region 200 K < T < 350 K indicates that the
mobility of soliton is low compared with electrons.

The authors wish to thank L. P. Gor’kov and 1. E. Dzyaloshinskii for interesting
discussions of the results of this work.
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