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The explicit form of multisoliton solutions of equations for the dynamics of an
anisotropic ferromagnet is determined by using the Hirota method, with allowance
for the magnetic-dipole interaction.

PACS numbers: 75.10. — b

Nonlinear dynamics of one-dimensional anisotropic ferromagnet can be described
by the Landau-Lifshitz equation without dissipation’

d 92
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The gyromagnetic ratio, exchange interaction constant, and the nominal magnetiza-
tion are introduced into the time renormalization ¢ and the x coordinates, so that M is
a dimensionless unit vector parallel to the magnetization direction and n; are the unit
vectors of the axes. The last terms on the right-hand side of Eq. (1) describe the
anisotropy of the magnet and the magnetic-dipole interaction. In the special case of a
single-axis ferromagnet with the anisotropy axis along the n, ( > 0 corresponds to the
easy-axis case) allowance for the magnetic-dipole interaction gives the value y = 4+.
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Lately, the solitary magnetization waves, described by the solutions of Eq. (1),
have been widely discussed.>”'® At B>y a simple solution of Eq. (1) such as
M = M(x — Vt) describes a moving domain boundary.”? More complex, two-param-
eter, isolated solutions were examined in Ref. 3 for ¥ = 0 and in Refs. 4-6 for y = 4.
These exact solutions are attributable to the fact that Eq. (1) is completely integrable.
In fact, as shown in Ref. 7 for the case § = ¥ = 0, in Ref. 8 for ¥ = 0, and in Ref. 9 for
the general case, the Landau-Lifshitz equation can be compared with the inverse prob-
lem of the scattering theory (ISP). Within the framework of the ISP, however, deter-
mination of the explicit form of the two-parameter solutions®® is a complex computa-
tional problem. A more constructive method of obtaining exact, multisoliton solutions
of nonlinear equations was proposed by Hirota and Satsuma.' In this work we obtain
the Hirota transformation for the Landau-Lifshitz equation (1) and the explicit form
of its N soliton solutions.

We shall seek a solution of Eq. (1) in the form

* *|—1 * * * x| ~1
Mx+iM =2—g- +L R MZ= —L—ili+L (2)
Y f g g f J f g |?
where g and f are complex x and ¢ functions. Substitution of Eq. (2) gives a rather
cumbersome equation for g and £, but, as is usually the case in the Hirota method, it
breaks up into a system of two simpler equations that have N soliton solutions. Using
Hirota’s differential operators,'® we can write these equations in the following form:

€
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2 2
where
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The anisotropy constant was introduced into the additional renormalization of x
and ¢ and the notation € = ¢/ B was inserted. In contrast to the usual bilinear equa-
tions for the given method, expressions (3a) and (3b) are trilinear, which complicates
further calculations but is not essential (see also Ref. 11).

Solution of Egs. (3), which corresponds to the solitons, has the following form

[(N=~1)/2]
g¥= X 2 @ (fysoen fgme JEXP (M) + oee Tigm+ 1) ' (a)
m=0 NCom +1
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where [N /2] is the maximum integer in addition to N /2, , C, represents summation
over all combinations of N elements in n, and (n) is the produce of all pair combina-
tions of n elements. Each soliton corresponds to an exponential function with the
exponent

7]i=kix+wit+7]‘:., (6)
where
o2 = (k2 -1 (1+e- k). M

For example, solution (4) for three solitons has the following form:

g* = expn, + expn, + expn, + a(l, 2, 3)expln, + 0, +7,),

f=14+a(1, 2)exp(y, + 5,) + a(l, 3)expln, + ny) + a(2, 3explny+1y) .

The factors a(s, p), in terms of which the coefficients of the sums (4) are expressed, are

k, -k, (mskg—wpkg)—(ws—wp)

@®

afs,p)=
2 2
kp +h, (ogk, +o k) - (o +a)p)

The value In a(s, p) determines the phase exchange between the s and p solitons passing
through each other.

Solution of (4)—(8) describes the system of *“free” solitons and solitons producing
bound states in pairs. The free soliton in this case corresponds to the Bloch domain
boundary, for which k, and w, are real, Re7n? is an arbitrary value describing the
location of the center of the domain wall and Imy? is uniquely connected with &;:

kl? =1+ ecos? Imn$ . )

Thus, each soliton is characterized by one parameter (for example, by &;) and the N-
soliton solution is NV parametric.

After substituting k;, — — k; and @, — — o;, we obtain a domain boundary that
moves in the same direction with the same velocity, but in which M, — — M, (we call
such solution an antisoliton).
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Two domain boundaries of opposite sign (a soliton-antisoliton pair) can produce a
bound state—self-localized magnetization wave. Thus, for this pair k; = k *, and the
coupling between the phases 7 and 7 { is described by the relation

oy, (10)

1
k? =1+ ¢cosh? —2—(1;‘: - n;

Of the four constants Rez{, Ren ?, Im7?, and Im7 { two are arbitrary constants that
determine the center-of-mass coordinate of the bound domain boundaries and the
phase reference of their mutual oscillation.

We proved that solution of (4)—(10) satisfies the Landau-Lifshitz equation for the
cases of one, two, and three solitons. Of course, the one-soliton solution coincides with
Walker’s results? for a moving or stationary domain boundary in a ferromagnet. The
expression for the maximum velocity of motion of the wall V_,, = (1 +e)1/2—-1 in
this case follows from Egs. (6) and (7). The two- and three-soliton solutions with real
k; describe two- and three-domain walls, respectively, all of whose interaction reduces
to the pair phase exchange occurring as a result of ther passage through each other (a
special case of such two-soliton solution, in which the velocities of the two walls of
opposite sign are the same in magnitude but opposite in direction, is given in Ref. 4.
The expression for self-localized magnetization wave coincides with that obtained in
Ref. 3 for ¥y =0 and with the result of Ref. 6 for the Landau-Lifshitz equation with
allowance for the magnetic-dipole interaction.

In conclusion, we thank A. M. Kosevich and I. M. Babich for a discussion of the
results of this work and for showing us the results prior to publication.
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