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It is shown that the dissipative ballooning modes in a tokamak do not have a
threshold along the pressure gradient and develop with a much larger increment
than the reciprocal skin time y ~ 1/7, (r,/7,)* (r,) is the skin time and 7, is the
Alfvén time for the current field, 7,/7,>1).

PACS numbers: 52.35.Py, 52.55.Gb

The effect of finite conductivity on the flute instability of a toroidal plasma col-
umn was examined in Refs. 1 and 2.

The main result of taking into account the finite conductivity involves the loss of
the stabilizing effect of shear. The instability had a threshold with respect to the
pressure gradient and began to grow when the ballooning effect exceeded the stabiliza-
tion due to the magnetic well. The increment of this instability y~1/7, (1,/7,)*? (7,
is the skin time and 7, is the Alfvén time for the current field) was much larger than
the reciprocal skin time.

Progress in the study of ballooning modes of the flute instability of an ideal
plasma showed that the necessary stability criterion for ideal ballooning modes is more
rigorous than the Mercier criterion® due to the new, destabilizing terms associated
with shear.* A paradox occurred in this case: the threshold of the dissipative flute
instability, which follows from Refs. 1 and 2, proved to be higher than that of ideal
ballooning modes, which was obtained in Ref. 4., This paradox will be resolved below.

In this paper we investigate the dissipative ballooning modes on the basis of the
equations for single-fluid, magnetic hydrodynamics with allowance for compressibili-
ty. According to Kadomtsev and Pogutse,’ the plasma perturbations can be described
by means of the electrostatic potential # of the longitudinal component of the vector
potential A, and the perturbed pressure P. The transformation proposed by Connor et
al.® within the limit of large azimuthal numbers (m =ng> 1) reduces the original lin-
earized equations to two equations for the Fourier transforms ¢ and P.
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Here S =¢'p/q, a = — 2P\ Rq*/B? 7, =Rq/C,, C} = B*/4np,, 7. = Rq/Cs, C}
= ¥oPo/pos 7, = 4Toa*/c?, a and R are the small and large radii of the torus, g is the
safety factor, I = yr5/n%q%, and
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where g, are the metric coefficients of the surface coordinate system with direct lines
of force.”

4=p

In the case of perfectly conducting plasma y~ 1/7,, for which 4 €I, and Egs. (1)
and (2) reduce to one, second-order equation for ¢.?

In the case of imperfectly conducting plasma y<€1/7,, Egs. (1) and (2) have two
different scales y~1 and y»1, which allows us to use the Van der Pol averaging
method.

The ballooning modes in the tokamak at ngd» 1 are localized perturbations with
respect to the radius of a plasma column, which correspond to large, characteristic y in
the average equation. At y*>M 2/I'" ? Egs. (1) and (2) reduce to one averaged equation.
For circular magnetic surfaces it has the following form:

JFZ a2(1+52y2+M2/F)
ress .¢{— (1+52y2)+a-l/° - +P=0,
| v 201 + M2/TD[1+T(1 + $%2)/N)
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Here M =7, /7.n%¢?>, N =r,/T,n’q* are parameters characterizing the ratio of the
skin time to the sound and Alfvén times, respectively, M2 = y,8N?, where 7, is the
adiabatic exponent (in a high-temperature plasma N> 1), and v, is the magnetic well in
the tokamak.’

It can be shown that in the opposite limiting case y”<M 2/I"? the instability de-
creases appreciably. The condition y*>M */I'%, which in standard notations has the
form ¥?»K } C2, means that the average pressure perturbation does not have time to
equalize along the lines of force.
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An analysis of Eq. (3) shows that its potential depends essentially on the ratios
S/S. (S =a'?/Nvy’®), a/a, (a, is determined from the condition a/2 = v,), and
B /B (B = a*?/N?*?). At very small shears S’ 5 S, and pressures <8, we can see
from Eq. (3), like in Ref. 9, that the increment is small, of the order of the reciprocal
skin time I" = a/2v,.

In this paper we examine systems with a shear of practical interest S~1 (of
course, $»5, ). We solve Eq. (3) by the variational method. We write the functional
corresponding to this equation and substitute as the trial function a function of the
form: P=1/(1* + y*), where A is a variational parameter.

After variation we obtain expressions for determination of the increment and the
parameter A:
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In the case of large pressures at 5>, , when the magnetic field perturbation is
considerable, the expression for the increment has the form

%
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This increment corresponds to a nonpotential, gravitational-dissipative instability"
which has a threshold nature along the pressure gradient.

In the case of small plasma pressures when 8= 8, and a Sa, we can obtain from
Egs. (4) and (5) the relation

F3+yOBN2F=a2N2/2. Q)

We obtain a qualitatively new result from this expression: the increment of the
dissipative ballooning modes does not have a threshold along the pressure gradient.
An instability begins to develop at any arbitrarily small gradient with the increment
F~a*?N?[y~1/1,(r,/74)*]. Thus, the aforemention paradox vanishes.

The general case is shown in Fig. 1, in which the increment of the dissipative
ballooning modes is plotted as a function of the pressure gradient of plasma a for
different values of pressure. Curve 1 corresponds to S equal to zero or to a fully
compressible liquid ¥, = 0, curve 2 was constructed for 8 = By,N** = 1, and curve 3
was constructed for # = 10.

The region corresponding to a high-temperature plasma lies between curves 2 and
3. The dashed curve represents the threshold increment (6), in obtaining it we assumed
that the velocity of sound is infinite. The ion sound in this case equalized the pressure
perturbations along the lines of force and at a < &, the instability did not develop. The
picture is basically different when the finite velocity of the ion sound is taken into
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FIG. 1. Dependence of the increment
LC/N?*? on a for different values of
B=ByrN*1,8=0,2,F=1;3,F=10.
The dashed curve represents the threshold
increment (6).

account: the pressure perturbations do not have time to equalize along the lines of
force and the ballooning instability, which develops due to the Alfven oscillations, can
exist at any pressure gradient. The increment of these dissipative ballooning modes
decreases with increasing plasma pressure, as seen in Fig. 1.

An estimate of the transport coefficients according to the relation y ~y/K?
shows that they are of the order of aa®/r,, i.e., of the order of the pseudoclassical
coeflicients.

The authors wish to thank academician B. B. Kadomtsev for useful discussions
and advice. ‘
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