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The surface impedance of a pure type I superconductor is calculated for surface
superconductivity conditions. In view of low impurity concentration, the
anomalous skin-effect regime is realized for the incident electromagnetic wave. Itis
shown that the superconducting currents, which flow along the superconductor
surface perpendicularly to the constant magnetic field, provide the main
contribution to the reflection of the electromagnetic wave. A comparison with
experiment is made, yielding good agreement.

PACS numbers: 74.55. + h, 74.30.Gn, 73.25. + i

The influence of surface superconductivity on the impedance of a dirty type 11
superconductor was investigated by Maki.' Because of the short mean path length, the
electron motion in a magnetic field is not clearly evident, since the electrons “forget”
about the bending of trajectories by the magnetic field due to frequent scattering by
impurities.

The situation is much more complicated in a pure type I superconductor when
the anomalous skin effect regime is realized, and it is necessary to take into account
the the quantum nature of the electron motion in a magnetic field; this makes the
problem highly nonlocal. The case of small temperatures compared to the order pa-
rameter was investigated earlier.” We shall investigate the impedance of a pure super
conductor under surface superconductivity conditions at fields close to H,;, which is
of interest because of the available experimental data.’

To determine the surface impedance, it is necessary to calculate the electromag-
netic response operator Q (w,., x, x"), which is determined by the loop of the exact
Green’s functions of the system, and then to extend it analytically to real frequencies.
Near H_, the order parameter 4 (H,x) is small and it is sufficient to find the Green’s
functions within an accuracy of terms of the order of A 2. In addition, there are correc-
tions associated with the magnetic field nonuniformity (superconducting currents in
the surface layer lead to a partial displacement of the magnetic field near the surface).
The corresponding correction to the vector potential is also of the order of 4 2. As a
result, the correction to the electromagnetic response of a normal metal in a constant
magnetic field is determined by five diagrams, two of which are associated with the
change in the vector potential 84 (x) (their contributions are the same), while three
correspond to the expansion of the Green’s function to the second order in A, The
latter diagrams turn out to be small near H. ;.

Thus, the problem of determining the impedance is reduced to calculating the
diagram in Fig. 1. Here, the solid line corresponds to Green’s function of a semi-
infinite normal metal in a longitudinal magnetic field; the dashed lined corresponds to
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the interaction H,,, due to the change 4 in the vector potential. The vertices have

£ p . We shall use the Landau representation® for the Green’s function
mc

v (x = A2 J(x” - Mp,)
G(x, x°, Pys Py Ek) = X s 1
" ick - {:n(pz)

where A = (c/eH )"? is the magnetic length and £,,( p,) is the electron energy in the nth
state, which is measured from the Fermi level. We choose the boundary condition on
the basis of the specular electron refiection from the surface:

Glx, 0, pys Py &) = G0, 27, Py ppr ) = 0. ()

Therefore, the ¢, (x — A °p,) functions are solutions of the Schrédinger equation for an
electron in a constant magnetic field with an infinite potential wall at x = 0, and the
location of the minimum of the parabolic potential is determined by the momentum
P, - Depending on the value of p, it can lie either inside the metal or outside it.

Let us determine the impedance for longitudinal polarization of the electric field
of the UHF wave, when the E vector is parallel to the static magnetic field H. Calcu-
lating the diagram in Fig. 1 by means of the Green’s functions (1) and taking into
account the orthogonality of the ¥, (x — A p,) functions, we have for the total current

J,=[j,(x)dx = - [ dx fdx'Aw(x')QR(w,x, x’)
2 o dp
= te f ? 22<n]H‘-ntlm><mlAwln>oR(a),n,m). 3)
nm
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The expression o (w,n,m) in Eq. (3) is the analytical continuation in the upper half-
plane of the expression

dp p?
ofw,, n, m)=T 2 [ ) )
b 2T iy, - E)le, - ENiey = £,)
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calculated for the Matsubar frequencies w, = 277,. The summation in Eq. (3) is
carried out over the energies E, for which the momentum p,, = [2m(e, — E,)]'* is
real.

In the UHF region the skin layer depth § (@) is small compared to the Larmor

radius of the electrons. Therefore, we can use the ordinary expression for the vector
potential in the presence of anomalous skin effect®:

2E°(0) 00 cos kx
A (%) = ] dk, )
Tiw o k2 +4niwa(kl)

where o(|k |) is the Fourier component of the normal conductivity.

In the calculation of the matrix elements of 4, (x) let us point out that the princi-
pal contribution is provided by electrons whose trajectory centers lie at large [com-
pared to & (w)] distances outside the metal limits. This corresponds to the known
concept of inefficiency: the major contribution to the impedance comes from the elec-
trons that slide along the surface inside the skin layer. The quasi-classical matrix
elements (n|coskx|m) are calculated in explicit form. Subsequent integration with
respect to k gives a result different from zero only for the diagonal matrix element
(n = m) and only for those trajectories for which the electron, as a result of its classical
motion in a magnetic field, moves away from the wall a distance less than or of the
order of & (w). Thus, only the term with m = n remains in the summation over m in
Eq. (3). Assuming that m = n in (4), we integrate with respect to p, and compute the
summation over the frequencies ¢, , after which the analytical continuation is achieved
by the replacement iw,—w. The matrix element {(n|H,,|n) is calculated from the
known expression for the correction for the vector potential.* The electron spectrum
E, (p,) in the potential well for fixed p, is determined from the Bohr-Sommerfeld
quantization rule. By computing the remaining integrals in (3), we obtain the final
expression for the impedance of a type I superconductor operating in the surface
superconductivity regime. Isolating the real part of the relative value of the absorption
coeflicient of the electromagnetic wave as compared with a normal metal, we obtain:

104 (e2/%) s DL H,, - H
_ll— -1 - 2.5X10 (6 .)\) (———)[ppa(ﬁ))]7/2( g ) c3 ,
o x? - 0.156 me 2 8(w) H

w c3

(6)

where £ is the correlation length characterizing the thickness of the superconducting
layer and « is the Ginsburg-Landau parameter.

Thus, the absorption decreases linearly with decreasing magnetic field. Equation
(6), strictly speaking, is valid for those fields for which the relative correction is small.
In the experiments using very pure lead (mean free path length of the order of 0.1
mm),’ a linear dependence for the impedance was observed almost in the entire field
range between H, and H_,, in agreement with Eq. (6) (the numerical coefficients for
the linear dependence are also of the same order of magnitude). For transverse polar-
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ization of the UHF wave, the impedance generally has no singularity® near H,,, but it
has a smooth maximum below H,,. We can assume that an increase in absorption at
fields above H_; is due to superconducting fluctuations.

In conclusion, the author wishes to thank A.A. Abrikosov for formulating the
problem and for his continuing interest in this work, L.G. Aslamazov, B.E. Meiero-
vich, and L.A. Fal’kovskii for valuable discussions, and I.Ya. Krasnopolin for ac-

quainting the author with the experiment and discussing the results.
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