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The quantum structure in the scattering of resonance atoms by the field of a
standing light wave was investigated. It is shown that the odd Bragg peaks depend
more strongly on the field frequency than the even peaks. An agreement with the
classical scattering theory is established.

PACS numbers: 32.80. — t

The scattering of Na atoms by the field of a resonance standing light wave was
recently observed.! The experimental results agree with the theory?? in which the
atom motion is assumed to be classical. The classical description is applicable when
the momentum transfer to the atom is much greater than the photon momentum. The
scattering diagram obtained in this case is the envelope of the Bragg peaks.
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However, the Bragg structure can also be detected in an experiment. Thus, for
example, the deflection of Na atoms due to absorption of one photon in the field of a
traveling wave was observed in Ref. 4.

A quantum approach, which was previously used® only for a rigorous resonance,
must be used to describe the Bragg structure. The scattering pattern in this case is
identical to the nonresonance scattering of electrons in the field of a standing wave.®
To determine the characteristics of resonance scattering, we must examine the finite
resonance detuning. This paper is devoted to an investigation of this problem.

When the interaction time 7 with the field is short, we can ignore the spontaneous
emission, y7<1, where ¥ ' is the lifetime of the excited atom. In the resonance
approximation the Hamiltonian of the atom has the form

2 %A  dE (y) coskx
g (Ev)_ )
2M dE (y)coskx — KA |

Here, the first term is the kinetic energy operator of an atom with mass M and the
second term describes the transitions in a standing wave along the x axis, with a
detuning 24. The field amplitude, which varies slowly with p, differs from zero in a
region of dimension /, and d is the dipole moment of the transition. The wave function
of the incident particles ¢”’({) describes a monokinetic beam of atoms in the ground
state. The problem reduces to that of determining the wave function of an atom after
passage through the standing wave.

Under normal conditions the longitudinal momentum of the atom p = Mv is
much larger than the transverse momentum. Therefore, we can look for a wave func-

,(x, y)) , where ¢l,2 (x, y) are slowly varying functions of the
(x, y).

tion in the form e?” (
coordinates.

When the time of the interaction with the field is short, where

(kr)?dE/M << 1 V)

the derivatives with respect to x can be discarded in the Hamiltonian, and the wave
equation assumes the form [V (y) = dE (y)/#]

/A Viy)cos kx
v _‘1‘/’_=-( i > v )
Vi(y)cos kx - A

Let us assume that ¥ ( y) is a rectangular, nonvanishing function equal to ¥, at O<y</.
Thus, for y >/ we have

iA
1//1(x) = cos(Q(x)r) + ———sin(Q(x)7) ,
Q(x)
C))
iV cos kx

1/12 (x) = ——"'QQ—(;;— sin(Q(x)r),
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where £2 (x) = [V § cos*kx + 4 2]"? is the local Rabi frequency and 7 = / /v. Expand-
ing ¥, ,(x) in a Fourier series, we determine the probability W, that the atom has a
transverse momentum nfik. The wave function of the atom in the ground (excited)
state contains only even (odd) harmonics. In particular, for A<V, 1/7 we have
W, =j2(Vyr) [j.(2) is the nth-order Bessel function], which coincides with the result
of Ref. 5. At large detunings 4> V,,, 1/7 for even harmonics W,, =J3 (Vir/44),
and the odd harmonics are small in terms of the parameter (V/A ). At V> 1 the
atom scatters a large number of quanta, of the order of ¥,r. For large n the Fourier
coefficients can be calculated by the method of steepest descent. In this case the saddle
point is determined from the condition

dQ(x)
dx

which describes the momentum increment of a classical particle in the potential field
#2 (x). Condition (2) makes it possible to ignore the variation of the initial x coordi-
nate during the short time of flight. Thus, we find the quasi-classical distribution

! 1z -—-lAl
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p‘L(x) = 2nhk = + %
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n, = -21- (v VE + AT~ A ),

The radical function (n; — n*) ~'”? corresponds to the classical momentum distribu-
tion function W ( p,) of the scattered particles

1 A
Wip,) =X—ofdx8(pl—pj_(x))

assuming that the initial coordinates of the incident particles are distributed uniformly
along the x’ axis, which is usually realized in view of the small (compared to the
atomic-beam aperture) wavelength A of light. In this case 2fin,k is the maximum
momentum for classical motion.

w

FIG. 1.

7

-n -3-2-1 01 2 J ng n

511 JETP Lett., Vol. 31, No. 9, 5 May 1980 Kazantsev et al. 511



The distributions (6) for the even and odd peaks are proportional to the probabil-
ities of finding the atom in the lower or upper quasi-energy state.

The distribution of the Bragg peaks is shown schematically in Fig. 1. For arbi-
trary parameters A4, V,, and v the amplitudes of these peaks oscillate about their
average values given by Eq. (5). The solid line represents the classical distribution
function corresponding to {(W,, + W,, ).

When the time of flight T of a scattered particle to the detector is larger than
y ', the odd peaks are smeared out because of recoil due to spontaneous emission.
The function, which describes the smearing out of the #-shaped peak, is f(5p,)
= fdWF{)6bp, — I, fik), where F(l) is the probability of photon emission in the 1
direction with the transition of an atom to the ground state. For linearly polarized
radiation, we have’ f(8p,) = (3/8%k )[1 + (8p, /#k )*] . This broadening is represent-
ed by the dashed line in Fig. 1.

Thus, at T > 1 the diffraction pattern consists of §-shaped peaks against a back-
ground of the distribution that was smeared by spontaneous relaxation. To determine
how the field distribution along the y axis influences the particles scattering, we shall
examine the model dependence E ( y)E, cosh ~'(p/1). In this case Eq. (3) allows an
exact solution.® The smooth switching on of the field significantly affects only the odd
maxima

W2n+ L = cosh_l(nAr)]22n+ 1(TTVOT) .

At A7>1 the odd peaks are exponentially small.

In conclusion, we note that the fine structure in the scattering of resonance parti-
cles is of interest for ultrahigh-resolution spectroscopy. Thus, in a weak field the
scattering diagram contains two symmetrical first-order peaks which are described by
the F(6p,) function. The amplitude of the peaks depends on detuning in a resonance
manner, and the resonance width is determined by the transit time. This effect can be
used to stabilize the frequency in molecular and atomic beams (for example, Ca®'®)
with weakly allowed transitions. Very weak fields are required for scattering of atoms
in the first maximum. Thus, the required resonance field power is 10 ~* W/cm? for Ca
scattering at 7 = 3X 10~ sec.
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